{ "cells": [ { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import math" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "contributing_readability = pd.read_csv(\"020125_CONTRIBUTING_readability.csv\")\n", "readme_readability = pd.read_csv(\"020125_README_readability.csv\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
filenameflesch_reading_easeflesch_kincaid_gradelinsear_write_formuladale_chall_readability_scoremcalpine_eflawreading_timechar_countword_count
0pytest-dev_pytest-bdd.git_hullabaloo_CONTRIBUT...40.9510.910.600011.6118.26.5844867
1lxqt_qterminal.git_hullabaloo_CONTRIBUTING.md51.149.08.00009.6315.310.44711105
2rbenv_ruby-build.git_hullabaloo_CONTRIBUTING.md71.147.69.000010.0527.01.167917
3muse-sequencer_muse.git_hullabaloo_CONTRIBUTING-68.9724.13.500025.996.01.09745
4mypaint_libmypaint_hullabaloo_CONTRIBUTING.md51.049.16.56259.9316.88.6859194
\n", "
" ], "text/plain": [ " filename flesch_reading_ease \\\n", "0 pytest-dev_pytest-bdd.git_hullabaloo_CONTRIBUT... 40.95 \n", "1 lxqt_qterminal.git_hullabaloo_CONTRIBUTING.md 51.14 \n", "2 rbenv_ruby-build.git_hullabaloo_CONTRIBUTING.md 71.14 \n", "3 muse-sequencer_muse.git_hullabaloo_CONTRIBUTING -68.97 \n", "4 mypaint_libmypaint_hullabaloo_CONTRIBUTING.md 51.04 \n", "\n", " flesch_kincaid_grade linsear_write_formula dale_chall_readability_score \\\n", "0 10.9 10.6000 11.61 \n", "1 9.0 8.0000 9.63 \n", "2 7.6 9.0000 10.05 \n", "3 24.1 3.5000 25.99 \n", "4 9.1 6.5625 9.93 \n", "\n", " mcalpine_eflaw reading_time char_count word_count \n", "0 18.2 6.58 448 67 \n", "1 15.3 10.44 711 105 \n", "2 27.0 1.16 79 17 \n", "3 6.0 1.09 74 5 \n", "4 16.8 8.68 591 94 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "contributing_readability.head()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "214.0" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "contributing_readability['word_count'].median()" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "9.1" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "readme_readability['flesch_kincaid_grade'].median()" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 2 }