159 lines
6.8 KiB
R
159 lines
6.8 KiB
R
library(tidyverse)
|
|
# test data directory: /gscratch/comdata/users/mjilg/program_testing/
|
|
# load in the paritioned directories
|
|
library(dplyr)
|
|
library(lubridate)
|
|
|
|
#for a given file we want to get the count data and produce a csv
|
|
readme_pub_info <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/metadata/0205_README_publication_commits.csv"
|
|
contributing_pub_info <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/metadata/0205_CONTRIBUTING_publication_commits.csv"
|
|
readme_dir <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/main_commit_data/readme/"
|
|
contributing_dir <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/main_commit_data/contributing/"
|
|
|
|
test_file <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/13125_hyak_test/main_commit_data/contributing/_linuxmint_cjs.git_commits.csv"
|
|
|
|
transform_commit_data <- function(filepath, ref_df){
|
|
#basic, loading in the file
|
|
df = read.csv(filepath, header = TRUE)
|
|
temp_df <- df
|
|
dir_path = dirname(filepath)
|
|
file_name = basename(filepath)
|
|
|
|
# isolate project id
|
|
project_id <- sub("_commits\\.csv$", "", file_name)
|
|
project_id <- sub("^_", "", project_id)
|
|
|
|
#make sure the dates are formatted correctly and state the project_id
|
|
df <- df |>
|
|
mutate(commit_date = ymd_hms(commit_date)) |>
|
|
mutate(project_id = project_id)
|
|
|
|
#find the publication entry, in the specified df
|
|
matched_entry <- ref_df |>
|
|
filter(repo_id == project_id)
|
|
pub_commit_date <- min(as.Date(matched_entry$commit_date))
|
|
|
|
#get information about project age either in the "present"
|
|
#or at the time of first commit
|
|
oldest_commit_date <- min(as.Date(df$commit_date))
|
|
project_age <- as.numeric(as.Date("2024-06-24") - oldest_commit_date)
|
|
age_at_commit <- as.numeric(pub_commit_date - oldest_commit_date)
|
|
|
|
#add that to the data
|
|
df <- df |>
|
|
mutate(age = project_age,
|
|
age_at_commit = age_at_commit)
|
|
|
|
#we are looking at weekly data, 6m before and 6m after
|
|
start_date <- pub_commit_date %m-% months(6)
|
|
#calculated_start_date <- pub_commit_date %m-% months(6)
|
|
#start_date <- max(calculated_start_date, oldest_commit_date)
|
|
end_date <- pub_commit_date %m+% months(6)
|
|
|
|
#getting the relative weeks to the publication date
|
|
relative_week <- function(date, ref_date) {
|
|
as.integer(as.numeric(difftime(date, ref_date, units = "days")) %/% 7)
|
|
}
|
|
|
|
df <- df |>
|
|
mutate(relative_week = relative_week(commit_date, pub_commit_date))
|
|
|
|
#filler for when there are weeks without commits
|
|
all_weeks <- seq(relative_week(start_date, pub_commit_date), relative_week(end_date, pub_commit_date))
|
|
complete_weeks_df <- expand.grid(relative_week = all_weeks,
|
|
project_id = project_id,
|
|
age = project_age,
|
|
age_at_commit = age_at_commit)
|
|
|
|
#for each week, get the list of unique authors that committed
|
|
cumulative_authors <- df %>%
|
|
arrange(relative_week) %>%
|
|
group_by(relative_week) %>%
|
|
summarize(cumulative_author_emails = list(unique(author_email)), .groups = 'drop')
|
|
#same for each committer
|
|
cumulative_committers <- df %>%
|
|
arrange(relative_week) %>%
|
|
group_by(relative_week) %>%
|
|
summarize(cumulative_committer_emails = list(unique(committer_email)), .groups = 'drop')
|
|
|
|
#now cut out the commit data that we don't care about
|
|
df <- df |>
|
|
filter(as.Date(pub_commit_date) >= start_date & as.Date(pub_commit_date) <= end_date)
|
|
|
|
#in order:
|
|
# - we group by project, week, ages
|
|
# - and we summarize commit and authorship details
|
|
# - we then fill in information for missingness
|
|
# - and add in vars for before/after
|
|
# - and weekly index
|
|
weekly_commits <- df |>
|
|
group_by(project_id, relative_week, age, age_at_commit) |>
|
|
summarise(commit_count = n(),
|
|
author_emails = list(unique(author_email)),
|
|
committer_emails = list(unique(committer_email)),
|
|
.groups = 'drop') |>
|
|
right_join(complete_weeks_df, by=c("relative_week", "project_id", "age", "age_at_commit")) |>
|
|
replace_na(list(commit_count = 0)) |>
|
|
mutate(before_after = if_else(relative_week < 0, 0, 1))
|
|
# then, to get the authorship details in
|
|
# we check if the email data is present, if not we fill in blank
|
|
# we bring in the information about authorship lists that we already had
|
|
# then comparing the current week's author list with the previous week's cumulative list, or empty
|
|
# ---- the length of that difference is the 'new' value
|
|
# then we delete out the author list information
|
|
weekly_with_authorship <- weekly_commits |>
|
|
mutate(
|
|
author_emails = ifelse(is.na(author_emails), list(character()), author_emails),
|
|
committer_emails = ifelse(is.na(committer_emails), list(character()), committer_emails)
|
|
) |>
|
|
left_join(cumulative_authors, by = "relative_week") |>
|
|
left_join(cumulative_committers, by = "relative_week") |>
|
|
mutate(new_author_emails = mapply(function(x, y) length(setdiff(x, y)), author_emails, lag(cumulative_author_emails, default = list(character(1)))),
|
|
new_committer_emails = mapply(function(x, y) length(setdiff(x, y)), committer_emails, lag(cumulative_committer_emails, default = list(character(1))))) |>
|
|
select(-author_emails, -committer_emails, -cumulative_author_emails, -cumulative_committer_emails)
|
|
|
|
#gracefully exit
|
|
return(weekly_with_authorship)
|
|
}
|
|
|
|
#then for all files in a directory
|
|
transform_directory_of_commit_data <- function(is_readme) {
|
|
ref_df <- read.csv(contributing_pub_info)
|
|
dir_path <- contributing_dir
|
|
if (is_readme){
|
|
ref_df <- read.csv(readme_pub_info)
|
|
dir_path <- readme_dir
|
|
}
|
|
counted_list <- list()
|
|
file_list <- list.files(path = dir_path, pattern = "*.csv", full.names = TRUE)
|
|
for (filepath in file_list) {
|
|
transformed_data <- transform_commit_data(filepath, ref_df)
|
|
counted_list <- append(counted_list, list(transformed_data))
|
|
}
|
|
counted_df <- bind_rows(counted_list)
|
|
|
|
return(counted_df)
|
|
}
|
|
|
|
#test_ref_df <- read.csv(contributing_pub_info)
|
|
#test_count_df <- transform_commit_data(test_file, test_ref_df)
|
|
|
|
#below is for contributing file
|
|
#big_df <- transform_directory_of_commit_data(is_readme=FALSE)
|
|
#output_filepath <-"/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/metadata/co_0205_CONTRIBUTING_weekly_count_data.csv"
|
|
|
|
#below is for readme
|
|
big_df <- transform_directory_of_commit_data(is_readme=TRUE)
|
|
output_filepath <-"/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/metadata/0205_README_weekly_count_data.csv"
|
|
#validation testing
|
|
#length(unique(big_df$project_id))
|
|
#filtered_df <- test_big_df %>%
|
|
# filter(commit_count != 0, new_author_emails == 0, new_committer_emails == 0)
|
|
test_df <- big_df |>
|
|
filter(age_at_commit >= 0)
|
|
|
|
|
|
|
|
#another graceful exit
|
|
write.csv(test_df, output_filepath, row.names = FALSE)
|