1
0

updated figures, resolved some DSL issues

This commit is contained in:
Matthew Gaughan 2026-01-10 17:32:30 -08:00
parent 3cfe103730
commit 07b6fa12b3
9 changed files with 280 additions and 14 deletions

BIN
011025_dsl_coefs.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 516 KiB

View File

@ -1,8 +1,40 @@
library(tidyverse)
library(dplyr)
library(stringr)
main_csv <-"~/analysis_data/121625_unified.csv"
main_df <- read.csv(main_csv, header = TRUE)
#01-10-26 look for affil rosters
affils_ <- main_df |>
group_by(isAuthorWMF)|>
summarise(
n_authors = n_distinct(AuthorPHID),
.groups = "drop"
)
#01-09-26 looking for comments that say certain things:
relelvant_messages <- main_df |>
mutate(
substring_count = str_count(comment_text, "meeting")
) |>
filter(substring_count!= 0)
# 01-09-26
split_of_comments <- main_df |>
group_by(comment_type, source) |>
summarize(
count = n()
)
authors_count <- main_df |>
group_by(source, isAuthorWMF)|>
summarise(
n_authors = n_distinct(AuthorPHID),
.groups = "drop"
)
#below 01-09-26
bz_summary <- main_df |>
mutate(isBz = if_else(
AuthorPHID == "PHID-USER-idceizaw6elwiwm5xshb", TRUE, FALSE
@ -64,7 +96,7 @@ summary_df <- tasks_flagged %>%
TRUE ~ NA
)
) |>
group_by(period, source, isAuthorWMF) %>%
group_by(period, source) %>%
summarize(
total_tasks = n(),
first_time_tasks = sum(is_first_time_author),

Binary file not shown.

After

Width:  |  Height:  |  Size: 408 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 370 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 402 KiB

View File

@ -82,7 +82,7 @@ dev_model <- dsl(
)
summary(dev_model)
#saveRDS(dev_model, "120725_logit_dsl.RDS")
#dev_model <- readRDS("dsl/120725_logit_dsl.RDS")
dev_model <- readRDS("dsl/121625_logit_dsl.RDS")
library(broom)
library(dplyr)
tidy.dsl <- function(x, conf.int = FALSE, conf.level = 0.95, exponentiate = FALSE, ...) {
@ -149,9 +149,11 @@ dsl_coefs <- ggplot(coef_df, aes(x = estimate, y = term)) +
y = "Variable") +
theme_minimal()
ggsave(
filename = "120825_dsl_coefs.png",
filename = "011025_dsl_coefs.png",
plot = dsl_coefs,
width = 8, # inches
height = 6, # inches
dpi = 600 # high resolution
height = 4, # inches
dpi = 800 # high resolution
)
library(texreg)

View File

@ -188,17 +188,17 @@ tasks_created <- ggplot(
linetype = "3313", color = "black", linewidth = 0.5) +
geom_vline(xintercept = 0, linetype = "dashed", color = "black", linewidth = 0.5) +
geom_text(
data = subset(weekly_summary, source == "c1" & week_index == 6),
data = subset(weekly_summary, source == "c1" & week_index ==10),
aes(x=week_index, y=120, label='Opt-out deployment'),
size = 2.5) +
size = 3) +
geom_text(
data = subset(weekly_summary, source == "c1" & week_index == -33),
data = subset(weekly_summary, source == "c1" & week_index == -21),
aes(x=week_index, y=120, label='Opt-in Testing'),
size = 2.5) +
size = 3) +
geom_text(
data = subset(weekly_summary, source == "c2" & week_index == -12),
data = subset(weekly_summary, source == "c2" & week_index == -18),
aes(x=week_index, y=20, label='Deployment Announcement'),
size = 2.5) +
size = 3) +
theme_minimal() +
scale_fill_viridis_d(
breaks = c("FALSE", "TRUE", "BzImport"),
@ -212,10 +212,10 @@ tasks_created <- ggplot(
theme(legend.position = "top")
tasks_created
ggsave(
filename = "121625_tasks_created.png",
filename = "011025_tasks_created.png",
plot = tasks_created,
width = 12, # inches
height = 6, # inches
width = 8, # inches
height = 4, # inches
dpi = 800 # high resolution
)

215
main_plot_script.R Normal file
View File

@ -0,0 +1,215 @@
library(tidyverse)
library(dplyr)
library(tidyr)
dsl_csv <-"~/dsl/121625_DSL_frame.csv"
dsl_df <- read.csv(dsl_csv, header = TRUE)
#4.1
weekly_summary <- dsl_df |>
group_by(week_index, source, isAuthorWMF)|>
summarise(
tasks_made = sum(!is.na(resolution_outcome)),
count_resolution_outcome = sum(dsl_score),
author_closer_sum = sum(author_closer == TRUE),
median_olmo_EP_prop_adac = median(olmo_EP_prop_adac),
median_olmo_TSOL_prop_adac = median(olmo_TSOL_prop_adac),
median_olmo_RK_prop_adac = median(olmo_RK_prop_adac),
median_comments_before_resolution = median(n_comments_before)
) |>
mutate(isAuthorWMF = factor(isAuthorWMF, levels = c("FALSE", "BzImport", "TRUE")))
tasks_created <- ggplot(
weekly_summary,
aes(
x=week_index,
y=tasks_made,
fill=isAuthorWMF
)
) +
facet_grid(source ~ .,
scales = "free_y",
labeller = labeller(source = c("c1" = "VisualEditor",
"c2" = "HTTPS-login",
"c3" = "HTTP-deprecation"))) +
geom_col(position = position_dodge(width = 0.9), width = 0.8) +
geom_vline(data = weekly_summary |> filter(source == "c1"),
aes(xintercept = -29),
linetype = "dotted", color = "black", linewidth = 0.5) +
geom_vline(data = weekly_summary |> filter(source == "c1"),
aes(xintercept = -9),
linetype = "dotted", color = "black", linewidth = 0.5) +
geom_vline(data = weekly_summary |> filter(source == "c1"),
aes(xintercept = -4),
linetype = "3313", color = "black", linewidth = 0.5) +
geom_vline(data = weekly_summary |> filter(source == "c2"),
aes(xintercept = -99),
linetype = "dotted", color = "black", linewidth = 0.5) +
geom_vline(data = weekly_summary |> filter(source == "c2"),
aes(xintercept = -4),
linetype = "3313", color = "black", linewidth = 0.5) +
geom_vline(data = weekly_summary |> filter(source == "c3"),
aes(xintercept = -97),
linetype = "dotted", color = "black", linewidth = 0.5) +
geom_vline(data = weekly_summary |> filter(source == "c3"),
aes(xintercept = -3),
linetype = "3313", color = "black", linewidth = 0.5) +
geom_vline(xintercept = 0, linetype = "dashed", color = "black", linewidth = 0.5) +
geom_text(
data = subset(weekly_summary, source == "c1" & week_index ==10),
aes(x=week_index, y=120, label='Opt-out deployment'),
size = 3) +
geom_text(
data = subset(weekly_summary, source == "c1" & week_index == -21),
aes(x=week_index, y=120, label='Opt-in Testing'),
size = 3) +
geom_text(
data = subset(weekly_summary, source == "c2" & week_index == -18),
aes(x=week_index, y=20, label='Deployment Announcement'),
size = 3) +
theme_minimal() +
scale_fill_viridis_d(
breaks = c("FALSE", "TRUE", "BzImport"),
labels = c("Nonaffiliate", "WMF-affiliate", "BzImport")
) +
labs(
x = "Weeks from Feature Deployment",
y = "Count of Tasks Created",
fill = "Task Author"
) +
theme(legend.position = "top")
tasks_created
ggsave(
filename = "011025_tasks_created.png",
plot = tasks_created,
width = 8, # inches
height = 4, # inches
dpi = 800 # high resolution
)
#4.2 plot comparing the TTR for different things
ttr_trajectory <- dsl_df |>
mutate(ttr_weeks = TTR_hours / 168) |>
mutate(isTriaged = if_else(priority == 'Needs Triage',
"Not Triaged",
"Triaged")) |>
group_by(week_index, isTriaged, source) |>
summarise(
count = n(),
mean_ttr = mean(ttr_weeks, na.rm = TRUE),
sd_ttr = sd(ttr_weeks, na.rm = TRUE)
)
ttr_trajectory_plot <- ttr_trajectory |>
filter(week_index >= -13) |>
filter(isTriaged == "Not Triaged") |>
ggplot(aes(x = week_index)) +
# Line for mean TTR
geom_line(aes(y = mean_ttr, color = "Mean TTR"), linewidth = 1) +
# Ribbon for standard deviation
geom_ribbon(aes(ymin = mean_ttr - sd_ttr, ymax = mean_ttr + sd_ttr),
fill = "lightblue", alpha = 0.4) +
# Line for count of tasks
geom_point(aes(y = count,
color = "Count of New Tasks"), linewidth = 1, linetype = "dashed") +
# Facet the plot by source and triaged status
facet_wrap(source ~ isTriaged, scales = "free_y") +
labs(
title = "TTR by Source and Triage Status (TODO)",
x = "Week Index",
y = "Mean TTR (in weeks)",
color = "Metrics"
) +
scale_color_manual(values = c("Mean TTR" = "blue", "Count of New Tasks" = "red")) +
theme_minimal()
ttr_trajectory_plot
ttr_boxplot <- dsl_df |>
filter(priority == "Needs Triage" |
priority == "Unbreak Now!" |
priority == "High") |>
filter(week_index >= -13) |>
ggplot(
aes(
x=as.factor(week_index),
y= TTR_hours/168,
color=priority,
)
) +
facet_grid(source ~ .,
scales = "free_y",
labeller = labeller(source = c("c1" = "VisualEditor",
"c2" = "HTTPS-login",
"c3" = "HTTP-deprecation"))) +
geom_boxplot(outlier.shape = NA) +
theme_minimal() +
coord_cartesian(ylim = c(0, 112)) +
geom_text(
data = subset(dsl_df |>
filter(priority == "Needs Triage" |
priority == "Unbreak Now!" |
priority == "High"), source == "c1" & week_index == 12),
aes(x=week_index, y=80, label='Opt-in Testing'),
color = "black",
size = 3) +
geom_vline(xintercept =14, linetype = "dashed", color = "black", linewidth = 0.5) +
scale_color_viridis_d(option='turbo') +
labs(x = "Weeks from Release",
y = "Time to Resolution (weeks)",
color = "Priority Tag") +
theme(legend.position = "top")
ttr_boxplot
ggsave(
filename = "011025_ttr_boxplot.png",
plot = ttr_boxplot,
width = 8, # inches
height = 4, # inches
dpi = 800 # high resolution
)
#4.3 plot comparing machine labels of information type
dsl_df <- dsl_df |>
filter(isAuthorWMF != "BzImport")
dsl_df_long <- dsl_df %>%
pivot_longer(
cols = c(olmo_EP_prop_adac, olmo_RK_prop_adac, olmo_TSOL_prop_adac),
names_to = "tag",
values_to = "proportion"
) %>%
mutate(tag = gsub("olmo_|_prop_adac", "", tag),
tag = case_when(
tag == "EP" ~ "Existent Problem",
tag == "RK" ~ "Record Keeping",
tag =="TSOL" ~ "Solutions"
))
olmo_comparison <- ggplot(
dsl_df_long,
aes(
x = tag,
y = proportion,
fill = isAuthorWMF,
)
) +
facet_grid(source ~ .,
scales = "free_y",
labeller = labeller(source = c("c1" = "VisualEditor",
"c2" = "HTTPS-login",
"c3" = "HTTP-deprecation"))) +
geom_boxplot() +
theme_minimal() +
scale_fill_viridis_d() +
labs(
x = "Issue Information Type Category",
y = "% of sentences machine-labeled",
color = "Is Author WMF?",
fill = "Is Author WMF?"
) +
theme(legend.position = "top")
olmo_comparison
ggsave(
filename = "011025_machine_label_comparison.png",
plot = olmo_comparison,
width = 8, # inches
height = 4, # inches
dpi = 800 # high resolution
)

View File

@ -0,0 +1,17 @@
1. SSH tunnel from your workstation using the following command:
ssh -N -L 8787:n3443:42777 mjilg@klone.hyak.uw.edu
and point your web browser to http://localhost:8787
2. log in to RStudio Server using the following credentials:
user: mjilg
password: u+Vtuz9i8I2EYxQXIDps
When done using RStudio Server, terminate the job by:
1. Exit the RStudio Session ("power" button in the top right corner of the RStudio window)
2. Issue the following command on the login node:
scancel -f 32251441