diff --git a/073125_FOSSY_comm_heatmap.png b/073125_FOSSY_comm_heatmap.png new file mode 100644 index 0000000..95bea46 Binary files /dev/null and b/073125_FOSSY_comm_heatmap.png differ diff --git a/mgaughan-rstudio-server_27817681.out b/mgaughan-rstudio-server_27817681.out deleted file mode 100644 index 985ba7a..0000000 --- a/mgaughan-rstudio-server_27817681.out +++ /dev/null @@ -1,17 +0,0 @@ -1. SSH tunnel from your workstation using the following command: - - ssh -N -L 8787:n3441:48367 mjilg@klone.hyak.uw.edu - - and point your web browser to http://localhost:8787 - -2. log in to RStudio Server using the following credentials: - - user: mjilg - password: WYkG3aRTe0NQjsw3Ayg6 - -When done using RStudio Server, terminate the job by: - -1. Exit the RStudio Session ("power" button in the top right corner of the RStudio window) -2. Issue the following command on the login node: - - scancel -f 27817681 diff --git a/p2/quest/neurobiber_cosine.R b/p2/quest/neurobiber_cosine.R index 2e94cff..15cb004 100644 --- a/p2/quest/neurobiber_cosine.R +++ b/p2/quest/neurobiber_cosine.R @@ -27,35 +27,69 @@ X <- do.call(rbind, neurobiber_df$normalized_features_vec) library(coop) #cos_sim1 <- coop::cosine(t(X)) + register_means <- aggregate( X, by = list( - priority = neurobiber_df$priority, outcome= neurobiber_df$task_status, - phase = neurobiber_df$phase, source = neurobiber_df$source, affiliation = neurobiber_df$AuthorWMFAffil ), FUN = mean ) -feature_mat <- as.matrix(register_means[, -(1:5)]) +feature_mat <- as.matrix(register_means[, -(1:3)]) cos_sim_matrix <- coop::cosine(t(feature_mat)) -rownames(cos_sim_matrix) <- apply(register_means[, 1:5], 1, paste, collapse = "_") +rownames(cos_sim_matrix) <- apply(register_means[, 1:3], 1, paste, collapse = "_") colnames(cos_sim_matrix) <- rownames(cos_sim_matrix) -scaled_mat <- scale(cos_sim_matrix) +annotation_row <- data.frame( + affiliation = register_means$affiliation, + source = register_means$source +) +rownames(annotation_row) <- rownames(cos_sim_matrix) + +annotation_col <- data.frame( + affiliation = register_means$affiliation, + source = register_means$source +) +rownames(annotation_col) <- colnames(cos_sim_matrix) + +annotation_row <- annotation_row |> + mutate(affil = case_when( + affiliation == "True" ~ "WMF", + affiliation == "False" ~ "non-WMF" + )) |> select(-affiliation) + +annotation_col <- annotation_col |> + mutate(affil = case_when( + affiliation == "True" ~ "WMF", + affiliation == "False" ~ "non-WMF" + )) |> select(-affiliation) + + +my_annotation_colors = list( + affil = c("WMF" = "green", "non-WMF" = "purple"), + source = c(c1 = "lightgrey", c2 = "grey", c3 = "black") +) + +cos_sim_matrix[lower.tri(cos_sim_matrix)] <- NA #pheatmap(scaled_mat, symm = TRUE) #heatmap(cos_sim_matrix, col=heat.colors(256), breaks=seq(-1, 1, length.out=257)) library(viridis) library(pheatmap) -pheatmap(cos_sim_matrix, - cluster_rows = FALSE, # Now features are clustered (rows) - cluster_cols = FALSE, - scale='none', - color = viridis(100)) # Standardize featu +fossy_heatmap <- pheatmap(cos_sim_matrix, + cluster_rows = FALSE, + cluster_cols = FALSE, + scale='none', + annotation_row = annotation_row, + annotation_col = annotation_col, + annotation_colors = my_annotation_colors, + na_col = "white") -diag(cos_sim_matrix) <- NA -which(cos_sim_matrix == max(cos_sim_matrix, na.rm = TRUE), arr.ind = TRUE) # Most similar -which(cos_sim_matrix == min(cos_sim_matrix, na.rm = TRUE), arr.ind = TRUE) # Least similar +ggsave(filename = "073125_FOSSY_comm_heatmap.png", plot = fossy_heatmap, width = 9, height = 9, dpi = 800) + +#diag(cos_sim_matrix) <- NA +#which(cos_sim_matrix == max(cos_sim_matrix, na.rm = TRUE), arr.ind = TRUE) # Most similar +#which(cos_sim_matrix == min(cos_sim_matrix, na.rm = TRUE), arr.ind = TRUE) # Least similar