updating with new EDA
This commit is contained in:
parent
067fd08dd4
commit
55964c754b
18
mgaughan-rstudio-server_27419348.out
Normal file
18
mgaughan-rstudio-server_27419348.out
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
1. SSH tunnel from your workstation using the following command:
|
||||||
|
|
||||||
|
ssh -N -L 8787:n3439:50819 mjilg@klone.hyak.uw.edu
|
||||||
|
|
||||||
|
and point your web browser to http://localhost:8787
|
||||||
|
|
||||||
|
2. log in to RStudio Server using the following credentials:
|
||||||
|
|
||||||
|
user: mjilg
|
||||||
|
password: lM83HdgeT310p2tkyoCk
|
||||||
|
|
||||||
|
When done using RStudio Server, terminate the job by:
|
||||||
|
|
||||||
|
1. Exit the RStudio Session ("power" button in the top right corner of the RStudio window)
|
||||||
|
2. Issue the following command on the login node:
|
||||||
|
|
||||||
|
scancel -f 27419348
|
||||||
|
slurmstepd: error: *** JOB 27419348 ON n3439 CANCELLED AT 2025-07-07T13:08:38 ***
|
@ -34,6 +34,9 @@ c1_input_df <- c1_input_df |>
|
|||||||
date_created >= as.numeric(as.POSIXct("2013-06-06", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-07-01", tz = "UTC")) ~ 2, # post-announcement pre-deployment
|
date_created >= as.numeric(as.POSIXct("2013-06-06", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-07-01", tz = "UTC")) ~ 2, # post-announcement pre-deployment
|
||||||
date_created >= as.numeric(as.POSIXct("2013-07-01", tz = "UTC"))~ 3 # post-deployment opt-out
|
date_created >= as.numeric(as.POSIXct("2013-07-01", tz = "UTC"))~ 3 # post-deployment opt-out
|
||||||
)) |>
|
)) |>
|
||||||
|
mutate(author_closer = AuthorPHID %in% CloserPHID,
|
||||||
|
same_author = AuthorPHID == CloserPHID) |>
|
||||||
|
mutate(closed_relevance = date_closed <= as.numeric(as.POSIXct("2013-10-01", tz = "UTC"))) |>
|
||||||
mutate(week_index = relative_week(date_created, as.Date("2013-07-01")))
|
mutate(week_index = relative_week(date_created, as.Date("2013-07-01")))
|
||||||
|
|
||||||
|
|
||||||
@ -51,6 +54,9 @@ c2_input_df <- c2_input_df |>
|
|||||||
date_created >= as.numeric(as.POSIXct("2013-08-01", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-08-28", tz = "UTC")) ~ 2, # post-announcement pre-deployment
|
date_created >= as.numeric(as.POSIXct("2013-08-01", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-08-28", tz = "UTC")) ~ 2, # post-announcement pre-deployment
|
||||||
date_created >= as.numeric(as.POSIXct("2013-08-28", tz = "UTC"))~ 3 # post-deployment opt-out
|
date_created >= as.numeric(as.POSIXct("2013-08-28", tz = "UTC"))~ 3 # post-deployment opt-out
|
||||||
)) |>
|
)) |>
|
||||||
|
mutate(author_closer = AuthorPHID %in% CloserPHID,
|
||||||
|
same_author = AuthorPHID == CloserPHID) |>
|
||||||
|
mutate(closed_relevance = date_closed <= as.numeric(as.POSIXct("2013-11-27", tz = "UTC"))) |>
|
||||||
mutate(week_index = relative_week(date_created, as.Date("2013-08-28")))
|
mutate(week_index = relative_week(date_created, as.Date("2013-08-28")))
|
||||||
|
|
||||||
# c3 key dates
|
# c3 key dates
|
||||||
@ -66,6 +72,9 @@ c3_input_df <- c3_input_df %>%
|
|||||||
date_created >= as.numeric(as.POSIXct("2015-06-12", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2015-07-02", tz = "UTC")) ~ 2, # post-announcement pre-deployment
|
date_created >= as.numeric(as.POSIXct("2015-06-12", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2015-07-02", tz = "UTC")) ~ 2, # post-announcement pre-deployment
|
||||||
date_created >= as.numeric(as.POSIXct("2015-07-02", tz = "UTC"))~ 3 # post-deployment opt-out
|
date_created >= as.numeric(as.POSIXct("2015-07-02", tz = "UTC"))~ 3 # post-deployment opt-out
|
||||||
)) |>
|
)) |>
|
||||||
|
mutate(author_closer = AuthorPHID %in% CloserPHID,
|
||||||
|
same_author = AuthorPHID == CloserPHID) |>
|
||||||
|
mutate(closed_relevance = date_closed <= as.numeric(as.POSIXct("2015-10-02", tz = "UTC"))) |>
|
||||||
mutate(week_index = relative_week(date_created, as.Date("2015-07-02")))
|
mutate(week_index = relative_week(date_created, as.Date("2015-07-02")))
|
||||||
|
|
||||||
# Combine the dataframes into one
|
# Combine the dataframes into one
|
||||||
@ -80,7 +89,8 @@ combined_df <- combined_df %>%
|
|||||||
arrange(date_created, .by_group = TRUE) %>%
|
arrange(date_created, .by_group = TRUE) %>%
|
||||||
mutate(
|
mutate(
|
||||||
task_index_prev = cumsum(comment_type == "task_description") - (comment_type == "task_description"),
|
task_index_prev = cumsum(comment_type == "task_description") - (comment_type == "task_description"),
|
||||||
comment_index_prev = cumsum(comment_type == "task_subcomment") - (comment_type == "task_subcomment")
|
comment_index_prev = cumsum(comment_type == "task_subcomment") - (comment_type == "task_subcomment"),
|
||||||
|
author_prior_phab_contrib = task_index_prev + comment_index_prev
|
||||||
) %>%
|
) %>%
|
||||||
ungroup() |>
|
ungroup() |>
|
||||||
rowwise() %>%
|
rowwise() %>%
|
||||||
@ -103,52 +113,47 @@ combined_df <- combined_df %>%
|
|||||||
|
|
||||||
|
|
||||||
combined_task_df <- combined_df %>%
|
combined_task_df <- combined_df %>%
|
||||||
add_count(TaskPHID, name = "TaskPHID_count") |>
|
add_count(TaskPHID, name = "task_event_comment_count") |>
|
||||||
filter(comment_type == "task_description") |>
|
filter(comment_type == "task_description") |>
|
||||||
mutate(time_to_close = date_closed - date_created,
|
mutate(time_to_close = date_closed - date_created,
|
||||||
time_to_close_hours = as.numeric(difftime(date_closed, date_created, units = "hours"))
|
time_to_close_hours = as.numeric(difftime(date_closed, date_created, units = "hours"))
|
||||||
) |>
|
) |>
|
||||||
group_by(AuthorPHID, source) %>%
|
group_by(AuthorPHID, source) %>%
|
||||||
arrange(date_created, .by_group = TRUE) %>% # recommended: order by date_created
|
arrange(date_created, .by_group = TRUE) %>% # recommended: order by date_created
|
||||||
mutate(task_index = row_number()) %>%
|
mutate(author_task_index = row_number()) %>%
|
||||||
ungroup()
|
ungroup()
|
||||||
|
|
||||||
ggplot(combined_task_df, aes(x = week_index, y = priority_score, color = source)) +
|
library(dplyr)
|
||||||
geom_point(alpha = 0.6) + # Points, with some transparency
|
|
||||||
geom_smooth(method = "loess", se = TRUE) + # LOESS curve, no confidence band
|
|
||||||
theme_minimal()
|
|
||||||
|
|
||||||
library(stringr)
|
combined_task_df <- combined_task_df |>
|
||||||
|
group_by(source) %>%
|
||||||
# 1. Count modal verbs in each task comment_text
|
|
||||||
combined_task_df <- combined_task_df %>%
|
|
||||||
rowwise() %>%
|
|
||||||
mutate(
|
mutate(
|
||||||
modal_verb_count = sum(str_detect(
|
time_to_close_percentile = 1- percent_rank(time_to_close_hours),
|
||||||
str_to_lower(comment_text),
|
comment_count_percentile = percent_rank(task_event_comment_count),
|
||||||
paste0("\\b", modal_verbs, "\\b", collapse = "|")
|
author_task_percentile = percent_rank(task_index_prev)
|
||||||
)),
|
# inverting it so that higher percentile is faster
|
||||||
modal_subset_count = sum(str_detect(
|
|
||||||
str_to_lower(comment_text),
|
|
||||||
paste0("\\b", modal_subset, "\\b", collapse = "|")
|
|
||||||
)),
|
|
||||||
user_count = sum(str_detect(
|
|
||||||
str_to_lower(comment_text),
|
|
||||||
paste0("\\b", whatever_subset, "\\b", collapse = "|")
|
|
||||||
))
|
|
||||||
) %>%
|
) %>%
|
||||||
ungroup()
|
ungroup()
|
||||||
|
|
||||||
|
ggplot(combined_task_df, aes(x = author_task_percentile, y =priority_score, color = source)) +
|
||||||
|
geom_point(alpha = 0.6) + # Points, with some transparency
|
||||||
|
geom_smooth(method = "loess", se = TRUE) + # LOESS curve, no confidence band
|
||||||
|
theme_minimal() +
|
||||||
|
facet_grid(source ~ author_closer)
|
||||||
|
|
||||||
library(ggdist)
|
library(ggdist)
|
||||||
ggplot(combined_df, aes(x = week_index, y = modal_subset_count, color = source, linetype=AuthorWMFAffil)) +
|
|
||||||
geom_point(alpha=0.1) + # Points, with some transparency
|
ggplot(combined_task_df, aes(x=phase, y=comment_count_percentile)) +
|
||||||
geom_smooth(method = "loess", se = FALSE) +
|
stat_slabinterval() +
|
||||||
theme_minimal()
|
theme_minimal()+
|
||||||
|
facet_grid(source ~ AuthorWMFAffil)
|
||||||
|
|
||||||
|
|
||||||
|
closed_combined_task_df <- combined_task_df |>
|
||||||
|
filter(!is.na(closed_relevance))
|
||||||
|
|
||||||
combined_task_df_subset <- subset(combined_task_df, time_to_close_hours < 1000)
|
ggplot(combined_task_df, aes(x=time_to_close_percentile, y=priority_score)) +
|
||||||
|
geom_point(alpha = 0.6) +
|
||||||
ggplot(combined_task_df_subset, aes(x = TaskPHID_count, y = task_index, color = source)) +
|
geom_smooth(method = "loess", se = TRUE) + # LOESS curve, no confidence band# Points, with some transparency
|
||||||
geom_smooth(method = "loess", se = TRUE) +
|
theme_minimal()+
|
||||||
geom_point(alpha=0.1) +
|
facet_grid(source ~ author_closer)
|
||||||
theme_minimal()
|
|
||||||
|
Loading…
Reference in New Issue
Block a user