1
0

some neurobiber PCA analysis

This commit is contained in:
Matthew Gaughan 2025-09-05 14:59:07 -07:00
parent a96fd6db2f
commit 6de62f2447
3 changed files with 92 additions and 147 deletions

View File

@ -0,0 +1,18 @@
1. SSH tunnel from your workstation using the following command:
ssh -N -L 8787:n3441:47269 mjilg@klone.hyak.uw.edu
and point your web browser to http://localhost:8787
2. log in to RStudio Server using the following credentials:
user: mjilg
password: 9Qgk9UkRdmKalTKyDmH4
When done using RStudio Server, terminate the job by:
1. Exit the RStudio Session ("power" button in the top right corner of the RStudio window)
2. Issue the following command on the login node:
scancel -f 28911380
[2025-09-05T14:55:26.103] error: *** JOB 28911380 ON n3441 CANCELLED AT 2025-09-05T14:55:26 DUE TO TIME LIMIT ***

View File

@ -0,0 +1,74 @@
library(tidyverse)
neurobiber_description_pca_csv <-"~/p2/quest/090425_description_PCA_df.csv"
neurobiber_description_pca_df <- read.csv(neurobiber_description_pca_csv , header = TRUE)
neurobiber_subcomment_pca_csv <-"~/p2/quest/090425_subcomment_PCA_df.csv"
neurobiber_subcomment_pca_df <- read.csv(neurobiber_subcomment_pca_csv , header = TRUE)
# look at correlation between PC1, PC2, and different outcome variables
library(dplyr)
description_anova_results <- neurobiber_description_pca_df %>%
group_by(source) %>%
group_map(~ summary(aov(PC2 ~ phase, data = .x)), .keep = TRUE)
description_anova_results
discussion_anova_results <- neurobiber_subcomment_pca_df %>%
group_by(source) %>%
group_map(~ summary(aov(PC2 ~ phase, data = .x)), .keep = TRUE)
discussion_anova_results
# look at the representative comments for PC1 and PC2
top5 <- neurobiber_subcomment_pca_df %>%
filter(source=="c2") |>
arrange(desc(PC2)) %>%
slice(15:30) %>%
pull(text)
bottom5 <- neurobiber_subcomment_pca_df %>%
filter(source=="c2") |>
arrange(PC2) %>%
slice(15:30) %>%
pull(text)
cat("Top 15:30 comment_text by score:\n")
print(top5)
cat("\nBottom 15:30 comment_text by score:\n")
print(bottom5)
aggregated_neurobiber_description_pca_df <- neurobiber_description_pca_df |>
group_by(AuthorWMFAffil, week_index, source, priority) %>%
summarise(mean_PC1 = median(PC1),
mean_PC2 = median(PC2),
mean_PC3 = median(PC3),
mean_PC4 = median(PC4),
mean_PC5 = median(PC5))
library(scales)
library(ggplot2)
affiliationColors <-
setNames( c('#5da2d8', '#c7756a')
,c("False", "True"))
long_df <- aggregated_neurobiber_description_pca_df %>%
tidyr::pivot_longer(
cols = starts_with("mean_PC"),
names_to = "PC",
values_to = "PC_value"
)
ggplot(long_df, aes(x = week_index, y = PC_value, color = AuthorWMFAffil, group = AuthorWMFAffil)) +
geom_line(size = 1) +
facet_grid(PC ~ source, scales = "free_y") +
scale_color_manual(values = affiliationColors, name = "WMF Affiliation") +
scale_x_continuous(breaks = pretty_breaks()) +
scale_y_continuous(limits = c(-10, 10)) +
labs(x = "Week Index", y = "Mean PC Value",
title = "Weekly Median PC Values by Source and PC, Colored by WMF Affiliation") +
theme_minimal(base_size = 14) +
theme(legend.position = "top")

View File

@ -1,147 +0,0 @@
library(tidyverse)
neurobiber_csv <-"~/p2/quest/072525_pp_biberplus_labels.csv"
neurobiber_df <- read.csv(neurobiber_csv , header = TRUE)
normalized_cols <- grep("^normalized_", names(neurobiber_df), value = TRUE)
neurobiber_df$normalized_features_vec <- lapply(
asplit(neurobiber_df[, normalized_cols], 1), as.numeric
)
library(dplyr)
# duplicate, declined, invalid -> declined
# stalled, open, progress -> open
# resolved -> resolved
neurobiber_df <- neurobiber_df |>
filter(comment_type == "task_description") |>
mutate(
task_status = case_when(
status %in% c("duplicate", "declined", "invalid") ~ "declined",
status %in% c("stalled", "open", "progress") ~ "open",
status == "resolved" ~ "resolved",
TRUE ~ status # fallback for unexpected values
))
X <- do.call(rbind, neurobiber_df$normalized_features_vec)
library(coop)
#cos_sim1 <- coop::cosine(t(X))
register_means <- aggregate(
X,
by = list(
outcome= neurobiber_df$task_status,
source = neurobiber_df$source,
affiliation = neurobiber_df$AuthorWMFAffil
),
FUN = mean
)
feature_mat <- as.matrix(register_means[, -(1:3)])
cos_sim_matrix <- coop::cosine(t(feature_mat))
rownames(cos_sim_matrix) <- apply(register_means[, 1:3], 1, paste, collapse = "_")
colnames(cos_sim_matrix) <- rownames(cos_sim_matrix)
#finding the most dissimilar pairs
compare_feature_vectors <- function(
pair1, pair2,
cos_sim_matrix,
feature_mat,
normalized_cols,
top_n = 5
) {
# Allow for both index and name input
if (is.character(pair1)) row_idx <- which(rownames(cos_sim_matrix) == pair1) else row_idx <- pair1
if (is.character(pair2)) col_idx <- which(colnames(cos_sim_matrix) == pair2) else col_idx <- pair2
# Get feature vectors
vec1 <- feature_mat[row_idx, ]
vec2 <- feature_mat[col_idx, ]
# Feature-wise absolute differences
feature_diff <- abs(vec1 - vec2)
top_features_idx <- order(feature_diff, decreasing = TRUE)[1:top_n]
top_features <- names(feature_diff)[top_features_idx]
top_diffs <- feature_diff[top_features_idx]
# Map Vxx to normalized column names
feature_nums <- as.integer(sub("V", "", top_features))
feature_colnames <- normalized_cols[feature_nums]
# Determine which vector is larger for each feature
larger_in <- ifelse(vec1[top_features_idx] > vec2[top_features_idx],
rownames(cos_sim_matrix)[row_idx],
colnames(cos_sim_matrix)[col_idx])
# Assemble results
top_features_df <- data.frame(
feature = top_features,
normalized_colname = feature_colnames,
vec1_value = vec1[top_features_idx],
vec2_value = vec2[top_features_idx],
abs_difference = top_diffs,
larger_in = larger_in
)
# Print pair and return
cat("Comparing:", rownames(cos_sim_matrix)[row_idx], "and", colnames(cos_sim_matrix)[col_idx], "\n")
print(top_features_df)
invisible(top_features_df)
}
compare_feature_vectors("resolved_c1_True", "resolved_c2_True", cos_sim_matrix, feature_mat, normalized_cols, top_n = 10)
#plotting stuff beneath here
annotation_row <- data.frame(
affiliation = register_means$affiliation,
source = register_means$source
)
rownames(annotation_row) <- rownames(cos_sim_matrix)
annotation_col <- data.frame(
affiliation = register_means$affiliation,
source = register_means$source
)
rownames(annotation_col) <- colnames(cos_sim_matrix)
annotation_row <- annotation_row |>
mutate(affil = case_when(
affiliation == "True" ~ "WMF",
affiliation == "False" ~ "non-WMF"
)) |> select(-affiliation)
annotation_col <- annotation_col |>
mutate(affil = case_when(
affiliation == "True" ~ "WMF",
affiliation == "False" ~ "non-WMF"
)) |> select(-affiliation)
my_annotation_colors = list(
affil = c("WMF" = "green", "non-WMF" = "purple"),
source = c(c1 = "lightgrey", c2 = "grey", c3 = "black")
)
cos_sim_matrix[lower.tri(cos_sim_matrix)] <- NA
#pheatmap(scaled_mat, symm = TRUE)
#heatmap(cos_sim_matrix, col=heat.colors(256), breaks=seq(-1, 1, length.out=257))
library(viridis)
library(pheatmap)
fossy_heatmap <- pheatmap(cos_sim_matrix,
cluster_rows = FALSE,
cluster_cols = FALSE,
scale='none',
annotation_row = annotation_row,
annotation_col = annotation_col,
annotation_colors = my_annotation_colors,
na_col = "white")
#ggsave(filename = "073125_FOSSY_comm_heatmap.png", plot = fossy_heatmap, width = 9, height = 9, dpi = 800)
#diag(cos_sim_matrix) <- NA
#which(cos_sim_matrix == max(cos_sim_matrix, na.rm = TRUE), arr.ind = TRUE) # Most similar
#which(cos_sim_matrix == min(cos_sim_matrix, na.rm = TRUE), arr.ind = TRUE) # Least similar