1
0

updating with new heatmap for FOSSY presentation

This commit is contained in:
Matthew Gaughan 2025-07-29 14:25:19 -07:00
parent c5966518ef
commit b624109f8d
3 changed files with 26 additions and 19 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

View File

@ -1,17 +1,17 @@
1. SSH tunnel from your workstation using the following command:
ssh -N -L 8787:n3439:41317 mjilg@klone.hyak.uw.edu
ssh -N -L 8787:n3441:48367 mjilg@klone.hyak.uw.edu
and point your web browser to http://localhost:8787
2. log in to RStudio Server using the following credentials:
user: mjilg
password: yo0riOVPbQWPzplKhedd
password: WYkG3aRTe0NQjsw3Ayg6
When done using RStudio Server, terminate the job by:
1. Exit the RStudio Session ("power" button in the top right corner of the RStudio window)
2. Issue the following command on the login node:
scancel -f 27815770
scancel -f 27817681

View File

@ -9,8 +9,18 @@ neurobiber_df$normalized_features_vec <- lapply(
asplit(neurobiber_df[, normalized_cols], 1), as.numeric
)
library(dplyr)
# duplicate, declined, invalid -> declined
# stalled, open, progress -> open
# resolved -> resolved
neurobiber_df <- neurobiber_df |>
filter(comment_type == "task_description")
filter(comment_type == "task_description") |>
mutate(
task_status = case_when(
status %in% c("duplicate", "declined", "invalid") ~ "declined",
status %in% c("stalled", "open", "progress") ~ "open",
status == "resolved" ~ "resolved",
TRUE ~ status # fallback for unexpected values
))
X <- do.call(rbind, neurobiber_df$normalized_features_vec)
@ -20,34 +30,31 @@ library(coop)
register_means <- aggregate(
X,
by = list(
affiliation = neurobiber_df$AuthorWMFAffil,
outcome= neurobiber_df$status
priority = neurobiber_df$priority,
outcome= neurobiber_df$task_status,
phase = neurobiber_df$phase,
source = neurobiber_df$source,
affiliation = neurobiber_df$AuthorWMFAffil
),
FUN = mean
)
feature_mat <- as.matrix(register_means[, -(1:2)])
feature_mat <- as.matrix(register_means[, -(1:5)])
cos_sim_matrix <- coop::cosine(t(feature_mat))
rownames(cos_sim_matrix) <- apply(register_means[, 1:2], 1, paste, collapse = "_")
rownames(cos_sim_matrix) <- apply(register_means[, 1:5], 1, paste, collapse = "_")
colnames(cos_sim_matrix) <- rownames(cos_sim_matrix)
scaled_mat <- scale(cos_sim_matrix)
#pheatmap(scaled_mat, symm = TRUE)
#heatmap(cos_sim_matrix, col=heat.colors(256), breaks=seq(-1, 1, length.out=257))
library(viridis)
library(pheatmap)
pheatmap(cos_sim_matrix,
register_rows = FALSE, # Now features are clustered (rows)
register_cols = FALSE,
scale='none') # Standardize featu
library(reshape2)
library(ggplot2)
sim_df <- melt(cos_sim_matrix, na.rm = TRUE)
ggplot(sim_df, aes(Var1, Var2, fill = value)) +
geom_tile() +
scale_fill_gradient2(low = "white", high = "red", mid = "blue", midpoint = 0.5, limit = c(0,1)) +
theme(axis.text.x = element_text(angle = 90, hjust = 1))
cluster_rows = FALSE, # Now features are clustered (rows)
cluster_cols = FALSE,
scale='none',
color = viridis(100)) # Standardize featu
diag(cos_sim_matrix) <- NA
which(cos_sim_matrix == max(cos_sim_matrix, na.rm = TRUE), arr.ind = TRUE) # Most similar