updating with new heatmap for FOSSY presentation
This commit is contained in:
		
							parent
							
								
									c5966518ef
								
							
						
					
					
						commit
						b624109f8d
					
				
							
								
								
									
										
											BIN
										
									
								
								affiliation_heatmap_fossy_plot.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								affiliation_heatmap_fossy_plot.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 65 KiB | 
| @ -1,17 +1,17 @@ | ||||
| 1. SSH tunnel from your workstation using the following command: | ||||
| 
 | ||||
|    ssh -N -L 8787:n3439:41317 mjilg@klone.hyak.uw.edu | ||||
|    ssh -N -L 8787:n3441:48367 mjilg@klone.hyak.uw.edu | ||||
| 
 | ||||
|    and point your web browser to http://localhost:8787 | ||||
| 
 | ||||
| 2. log in to RStudio Server using the following credentials: | ||||
| 
 | ||||
|    user: mjilg | ||||
|    password: yo0riOVPbQWPzplKhedd | ||||
|    password: WYkG3aRTe0NQjsw3Ayg6 | ||||
| 
 | ||||
| When done using RStudio Server, terminate the job by: | ||||
| 
 | ||||
| 1. Exit the RStudio Session ("power" button in the top right corner of the RStudio window) | ||||
| 2. Issue the following command on the login node: | ||||
| 
 | ||||
|       scancel -f 27815770 | ||||
|       scancel -f 27817681 | ||||
| @ -9,8 +9,18 @@ neurobiber_df$normalized_features_vec <- lapply( | ||||
|   asplit(neurobiber_df[, normalized_cols], 1), as.numeric | ||||
| ) | ||||
| library(dplyr) | ||||
| # duplicate, declined, invalid -> declined  | ||||
| # stalled, open, progress -> open | ||||
| # resolved -> resolved | ||||
| neurobiber_df <- neurobiber_df |> | ||||
|   filter(comment_type == "task_description") | ||||
|   filter(comment_type == "task_description") |> | ||||
|   mutate( | ||||
|     task_status = case_when( | ||||
|       status %in% c("duplicate", "declined", "invalid") ~ "declined", | ||||
|       status %in% c("stalled", "open", "progress") ~ "open", | ||||
|       status == "resolved" ~ "resolved", | ||||
|       TRUE ~ status  # fallback for unexpected values | ||||
|     )) | ||||
| 
 | ||||
| X <- do.call(rbind, neurobiber_df$normalized_features_vec) | ||||
| 
 | ||||
| @ -20,34 +30,31 @@ library(coop) | ||||
| register_means <- aggregate( | ||||
|   X, | ||||
|   by = list( | ||||
|     affiliation = neurobiber_df$AuthorWMFAffil, | ||||
|     outcome= neurobiber_df$status | ||||
|     priority = neurobiber_df$priority, | ||||
|     outcome= neurobiber_df$task_status, | ||||
|     phase = neurobiber_df$phase, | ||||
|     source = neurobiber_df$source, | ||||
|     affiliation = neurobiber_df$AuthorWMFAffil | ||||
|   ), | ||||
|   FUN = mean | ||||
| ) | ||||
| 
 | ||||
| feature_mat <- as.matrix(register_means[, -(1:2)])   | ||||
| feature_mat <- as.matrix(register_means[, -(1:5)])   | ||||
| cos_sim_matrix <- coop::cosine(t(feature_mat)) | ||||
| rownames(cos_sim_matrix) <- apply(register_means[, 1:2], 1, paste, collapse = "_") | ||||
| rownames(cos_sim_matrix) <- apply(register_means[, 1:5], 1, paste, collapse = "_") | ||||
| colnames(cos_sim_matrix) <- rownames(cos_sim_matrix) | ||||
| 
 | ||||
| 
 | ||||
| scaled_mat <- scale(cos_sim_matrix) | ||||
| #pheatmap(scaled_mat, symm = TRUE) | ||||
| #heatmap(cos_sim_matrix, col=heat.colors(256), breaks=seq(-1, 1, length.out=257)) | ||||
| library(viridis) | ||||
| library(pheatmap) | ||||
| pheatmap(cos_sim_matrix,  | ||||
|          register_rows = FALSE,    # Now features are clustered (rows) | ||||
|          register_cols = FALSE, | ||||
|          scale='none')         # Standardize featu | ||||
| 
 | ||||
| library(reshape2) | ||||
| library(ggplot2) | ||||
| sim_df <- melt(cos_sim_matrix, na.rm = TRUE) | ||||
| ggplot(sim_df, aes(Var1, Var2, fill = value)) + | ||||
|   geom_tile() + | ||||
|   scale_fill_gradient2(low = "white", high = "red", mid = "blue", midpoint = 0.5, limit = c(0,1)) + | ||||
|   theme(axis.text.x = element_text(angle = 90, hjust = 1)) | ||||
|          cluster_rows = FALSE,    # Now features are clustered (rows) | ||||
|          cluster_cols = FALSE, | ||||
|          scale='none', | ||||
|          color = viridis(100))         # Standardize featu | ||||
| 
 | ||||
| diag(cos_sim_matrix) <- NA | ||||
| which(cos_sim_matrix == max(cos_sim_matrix, na.rm = TRUE), arr.ind = TRUE)  # Most similar | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user