updating with new heatmap for FOSSY presentation
This commit is contained in:
parent
c5966518ef
commit
b624109f8d
BIN
affiliation_heatmap_fossy_plot.png
Normal file
BIN
affiliation_heatmap_fossy_plot.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 65 KiB |
@ -1,17 +1,17 @@
|
|||||||
1. SSH tunnel from your workstation using the following command:
|
1. SSH tunnel from your workstation using the following command:
|
||||||
|
|
||||||
ssh -N -L 8787:n3439:41317 mjilg@klone.hyak.uw.edu
|
ssh -N -L 8787:n3441:48367 mjilg@klone.hyak.uw.edu
|
||||||
|
|
||||||
and point your web browser to http://localhost:8787
|
and point your web browser to http://localhost:8787
|
||||||
|
|
||||||
2. log in to RStudio Server using the following credentials:
|
2. log in to RStudio Server using the following credentials:
|
||||||
|
|
||||||
user: mjilg
|
user: mjilg
|
||||||
password: yo0riOVPbQWPzplKhedd
|
password: WYkG3aRTe0NQjsw3Ayg6
|
||||||
|
|
||||||
When done using RStudio Server, terminate the job by:
|
When done using RStudio Server, terminate the job by:
|
||||||
|
|
||||||
1. Exit the RStudio Session ("power" button in the top right corner of the RStudio window)
|
1. Exit the RStudio Session ("power" button in the top right corner of the RStudio window)
|
||||||
2. Issue the following command on the login node:
|
2. Issue the following command on the login node:
|
||||||
|
|
||||||
scancel -f 27815770
|
scancel -f 27817681
|
@ -9,8 +9,18 @@ neurobiber_df$normalized_features_vec <- lapply(
|
|||||||
asplit(neurobiber_df[, normalized_cols], 1), as.numeric
|
asplit(neurobiber_df[, normalized_cols], 1), as.numeric
|
||||||
)
|
)
|
||||||
library(dplyr)
|
library(dplyr)
|
||||||
|
# duplicate, declined, invalid -> declined
|
||||||
|
# stalled, open, progress -> open
|
||||||
|
# resolved -> resolved
|
||||||
neurobiber_df <- neurobiber_df |>
|
neurobiber_df <- neurobiber_df |>
|
||||||
filter(comment_type == "task_description")
|
filter(comment_type == "task_description") |>
|
||||||
|
mutate(
|
||||||
|
task_status = case_when(
|
||||||
|
status %in% c("duplicate", "declined", "invalid") ~ "declined",
|
||||||
|
status %in% c("stalled", "open", "progress") ~ "open",
|
||||||
|
status == "resolved" ~ "resolved",
|
||||||
|
TRUE ~ status # fallback for unexpected values
|
||||||
|
))
|
||||||
|
|
||||||
X <- do.call(rbind, neurobiber_df$normalized_features_vec)
|
X <- do.call(rbind, neurobiber_df$normalized_features_vec)
|
||||||
|
|
||||||
@ -20,34 +30,31 @@ library(coop)
|
|||||||
register_means <- aggregate(
|
register_means <- aggregate(
|
||||||
X,
|
X,
|
||||||
by = list(
|
by = list(
|
||||||
affiliation = neurobiber_df$AuthorWMFAffil,
|
priority = neurobiber_df$priority,
|
||||||
outcome= neurobiber_df$status
|
outcome= neurobiber_df$task_status,
|
||||||
|
phase = neurobiber_df$phase,
|
||||||
|
source = neurobiber_df$source,
|
||||||
|
affiliation = neurobiber_df$AuthorWMFAffil
|
||||||
),
|
),
|
||||||
FUN = mean
|
FUN = mean
|
||||||
)
|
)
|
||||||
|
|
||||||
feature_mat <- as.matrix(register_means[, -(1:2)])
|
feature_mat <- as.matrix(register_means[, -(1:5)])
|
||||||
cos_sim_matrix <- coop::cosine(t(feature_mat))
|
cos_sim_matrix <- coop::cosine(t(feature_mat))
|
||||||
rownames(cos_sim_matrix) <- apply(register_means[, 1:2], 1, paste, collapse = "_")
|
rownames(cos_sim_matrix) <- apply(register_means[, 1:5], 1, paste, collapse = "_")
|
||||||
colnames(cos_sim_matrix) <- rownames(cos_sim_matrix)
|
colnames(cos_sim_matrix) <- rownames(cos_sim_matrix)
|
||||||
|
|
||||||
|
|
||||||
scaled_mat <- scale(cos_sim_matrix)
|
scaled_mat <- scale(cos_sim_matrix)
|
||||||
#pheatmap(scaled_mat, symm = TRUE)
|
#pheatmap(scaled_mat, symm = TRUE)
|
||||||
#heatmap(cos_sim_matrix, col=heat.colors(256), breaks=seq(-1, 1, length.out=257))
|
#heatmap(cos_sim_matrix, col=heat.colors(256), breaks=seq(-1, 1, length.out=257))
|
||||||
|
library(viridis)
|
||||||
library(pheatmap)
|
library(pheatmap)
|
||||||
pheatmap(cos_sim_matrix,
|
pheatmap(cos_sim_matrix,
|
||||||
register_rows = FALSE, # Now features are clustered (rows)
|
cluster_rows = FALSE, # Now features are clustered (rows)
|
||||||
register_cols = FALSE,
|
cluster_cols = FALSE,
|
||||||
scale='none') # Standardize featu
|
scale='none',
|
||||||
|
color = viridis(100)) # Standardize featu
|
||||||
library(reshape2)
|
|
||||||
library(ggplot2)
|
|
||||||
sim_df <- melt(cos_sim_matrix, na.rm = TRUE)
|
|
||||||
ggplot(sim_df, aes(Var1, Var2, fill = value)) +
|
|
||||||
geom_tile() +
|
|
||||||
scale_fill_gradient2(low = "white", high = "red", mid = "blue", midpoint = 0.5, limit = c(0,1)) +
|
|
||||||
theme(axis.text.x = element_text(angle = 90, hjust = 1))
|
|
||||||
|
|
||||||
diag(cos_sim_matrix) <- NA
|
diag(cos_sim_matrix) <- NA
|
||||||
which(cos_sim_matrix == max(cos_sim_matrix, na.rm = TRUE), arr.ind = TRUE) # Most similar
|
which(cos_sim_matrix == max(cos_sim_matrix, na.rm = TRUE), arr.ind = TRUE) # Most similar
|
||||||
|
Loading…
Reference in New Issue
Block a user