1
0

first analysis of VE commit data

This commit is contained in:
Matthew Gaughan 2025-02-15 13:55:48 -08:00
parent 36fd714f24
commit df7be39071
10 changed files with 105 additions and 28 deletions

View File

@ -8,3 +8,8 @@ cd ..
ls
ls commit_data
ls commit_data/visualeditor
cd /mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case1/
ls
rm event_0215_ve_weekly_commit_count_data.csv
rm announcement_0215_ve_weekly_commit_count_data.csv
ls

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

View File

@ -1,8 +1,9 @@
library(tidyverse)
#library(tidyverse)
library(dplyr)
library(lubridate)
library(tidyr)
ve_commit_fp <- "/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/commit_data/visualeditor/VisualEditor_2012-01-01_to_2014-12-31.csv"
ve_commit_fp <- "/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case1/visualeditor_commits.csv"
transform_commit_data <- function(filepath){
#basic, loading in the file
@ -13,7 +14,8 @@ transform_commit_data <- function(filepath){
# TODO: this is project/event specific
event_date <- as.Date("2013-07-01")
#event_date <- as.Date("2013-07-01")
event_date <- as.Date("2013-06-06")
# isolate project id
project_id <- sub("_.*$", "", file_name)
@ -52,6 +54,7 @@ transform_commit_data <- function(filepath){
project_id = project_id,
age = project_age)
#for each week, get the list of unique authors that committed
cumulative_authors <- df %>%
arrange(relative_week) %>%
@ -79,9 +82,10 @@ transform_commit_data <- function(filepath){
author_emails = list(unique(author_email)),
committer_emails = list(unique(committer_email)),
mediawiki_dev_commit_count = sum(grepl("@users.mediawiki.org", author_email)),
wikimedia_commit_count = sum(grepl("@wikimedia.org", author_email)),
l10n_commit_count = sum(grepl("l10n-bot@translatewiki.net", author_email)),
jenkins_commit_count = sum(grepl("@gerrit.wikimedia.org", author_email)),
wikimedia_commit_count = sum(grepl("@wikimedia.org|@wikimedia.de", author_email)),
wikia_commit_count = sum(grepl("@wikia-inc.com", author_email)),
bot_commit_count = sum(grepl("l10n-bot@translatewiki.net|tools.libraryupgrader@tools.wmflabs.org", author_email)),
jenkins_commit_count = sum(grepl("jenkins-bot@gerrit.wikimedia.org|gerrit@wikimedia.org", author_email)),
.groups = 'drop') |>
right_join(complete_weeks_df, by=c("relative_week", "project_id", "age")) |>
replace_na(list(commit_count = 0)) |>
@ -89,6 +93,7 @@ transform_commit_data <- function(filepath){
replace_na(list(l10n_commit_count = 0)) |>
replace_na(list(jenkins_commit_count = 0)) |>
replace_na(list(mediawiki_dev_commit_count = 0)) |>
replace_na(list(wikia_commit_count = 0)) |>
mutate(before_after = if_else(relative_week < 0, 0, 1))
# then, to get the authorship details in
# we check if the email data is present, if not we fill in blank
@ -126,8 +131,8 @@ transform_commit_data <- function(filepath){
test <- read.csv(ve_commit_fp, header = TRUE)
transformed <- transform_commit_data(ve_commit_fp)
output_filepath <-"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/commit_data/visualeditor/0210_ve_weekly_count_data.csv"
output_filepath <-"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case1/announcement_0215_ve_weekly_commit_count_data.csv"
project_id <- "test"
write.csv(transformed, output_filepath, row.names = FALSE)

View File

@ -0,0 +1,40 @@
library(tidyverse)
count_data_fp <-"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case1/event_0215_ve_weekly_commit_count_data.csv"
input_df <- read.csv(count_data_fp, header = TRUE)
input_df$nonbot_commit_count <- input_df$commit_count - input_df$bot_commit_count
library(scales)
library(ggplot2)
time_plot <- input_df |>
ggplot(aes(x=relative_week, y=jenkins_commit_count)) +
labs(x="Weekly Offset", y="Gerrit/Jenkins Commit Count") +
geom_smooth() +
geom_vline(xintercept = 0)+
theme_bw() +
theme(legend.position = "top")
time_plot
share_df <- input_df |>
mutate(wikimedia_share = wikimedia_commit_count / nonbot_commit_count) |>
mutate(wikia_share = wikia_commit_count / nonbot_commit_count) |>
mutate(gerrit_share = jenkins_commit_count / nonbot_commit_count) |>
mutate(mw_dev_share = mediawiki_dev_commit_count / nonbot_commit_count) |>
mutate(other_share = (nonbot_commit_count - jenkins_commit_count - wikia_commit_count - wikimedia_commit_count - mediawiki_dev_commit_count) / nonbot_commit_count)|>
drop_na()
share_long <- share_df |>
select(relative_week, wikimedia_share, wikia_share, gerrit_share, mw_dev_share, other_share) |>
pivot_longer(cols = c(wikimedia_share, wikia_share, gerrit_share, mw_dev_share, other_share), names_to = "category", values_to = "share")
share_plot <- share_long |>
ggplot(aes(x=relative_week, y=share, color=category)) +
geom_smooth() +
geom_vline(xintercept = 0)+
labs(x = "Relative Week", y = "Share of Nonbot Commit Count", color = "Affiliation") +
ggtitle("Weekly Share of Nonbot Commit Count by Category") +
theme_bw() +
theme(legend.position = "top")
share_plot

View File

@ -1,18 +0,0 @@
count_data_fp <-"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/commit_data/visualeditor/0210_ve_weekly_count_data.csv"
input_df <- read_csv(count_data_fp)
input_df$nonbot_commit_count <- input_df$commit_count - input_df$l10n_commit_count - input_df$jenkins_commit_count
input_df <- input_df |>
filter(relative_week < 79)
library(scales)
library(ggplot2)
time_plot <- input_df |>
ggplot(aes(x=relative_week, y=wikimedia_commit_count)) +
labs(x="Weekly Offset", y="WMF Commit Count") +
geom_smooth() +
geom_vline(xintercept = 0)+
theme_bw() +
theme(legend.position = "top")
time_plot

45
commit_analysis/models.R Normal file
View File

@ -0,0 +1,45 @@
library(tidyverse)
count_data_fp <-"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case1/event_0215_ve_weekly_commit_count_data.csv"
input_df <- read.csv(count_data_fp, header = TRUE)
library(rdd)
var(input_df$commit_count) # 1253.343
mean(input_df$commit_count) # 44.92381
median(input_df$commit_count) # 39.5
get_optimal_bandwidth <- function(df){
bw <- tryCatch({
IKbandwidth(df$relative_week, df$commit_count, cutpoint = 0, verbose = FALSE, kernel = "triangular")
}, error = function(e) {
NA
})
}
optimal_bandwidth <- get_optimal_bandwidth(input_df)
window_num <- 19
input_df <- input_df |>
filter(relative_week >= (- window_num) & relative_week <= (window_num)) |>
mutate(other_commit_count = commit_count - bot_commit_count - mediawiki_dev_commit_count - wikia_commit_count - wikimedia_commit_count - jenkins_commit_count)
simple_model <- glm.nb(commit_count~before_after*relative_week, data=input_df)
summary(simple_model)
library(lme4)
library(dplyr)
#get into mlm format
long_df <- input_df |>
pivot_longer(cols = c(other_commit_count, wikimedia_commit_count, jenkins_commit_count, wikia_commit_count, mediawiki_dev_commit_count),
names_to = "commit_type",
values_to = "lengthened_commit_count")
mlm <- glmer.nb(lengthened_commit_count ~ before_after*relative_week + (before_after*relative_week|commit_type),
control=glmerControl(optimizer="bobyqa",
optCtrl=list(maxfun=2e5)), nAGQ=0,
data=long_df)
summary(mlm)
ranefs <- ranef(mlm)
print(ranefs)
saveRDS(mlm, "021525_ve_event_mlm.rda")