1
0

updated preliminary phabricator EDA with things re: longitudinal data

This commit is contained in:
Matthew Gaughan 2025-06-30 11:30:27 -07:00
parent 2af7983fdb
commit edcb174d42

View File

@ -9,6 +9,11 @@ c2_input_df <- read.csv(c2_count , header = TRUE)
c3_count <-"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case3/062725_c3_cleaned_phab.csv" c3_count <-"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case3/062725_c3_cleaned_phab.csv"
c3_input_df <- read.csv(c3_count , header = TRUE) c3_input_df <- read.csv(c3_count , header = TRUE)
#getting the relative weeks to the publication date
relative_week <- function(date, ref_date) {
as.integer(as.numeric(difftime(date, ref_date, units = "days")) %/% 7)
}
#phase of feature deployments #phase of feature deployments
# pre opt-in (0) # pre opt-in (0)
# opt-in beta (1) # opt-in beta (1)
@ -18,7 +23,7 @@ c3_input_df <- read.csv(c3_count , header = TRUE)
# opt-in = as.Date("2012-12-11) # opt-in = as.Date("2012-12-11)
# deployment announcement = as.Date("2013-06-06") # deployment announcement = as.Date("2013-06-06")
# deployment_date <- as.Date("2013-07-01") # deployment_date <- as.Date("2013-07-01")
library(dplyr)
c1_input_df <- c1_input_df |> c1_input_df <- c1_input_df |>
mutate(date_created = as.numeric(as.POSIXct(date_created, tz = "UTC"))) |> mutate(date_created = as.numeric(as.POSIXct(date_created, tz = "UTC"))) |>
mutate(source = "c1") |> mutate(source = "c1") |>
@ -27,7 +32,8 @@ c1_input_df <- c1_input_df |>
date_created >= as.numeric(as.POSIXct("2012-12-11", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-06-06", tz = "UTC")) ~ 1, # opt-in beta date_created >= as.numeric(as.POSIXct("2012-12-11", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-06-06", tz = "UTC")) ~ 1, # opt-in beta
date_created >= as.numeric(as.POSIXct("2013-06-06", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-07-01", tz = "UTC")) ~ 2, # post-announcement pre-deployment date_created >= as.numeric(as.POSIXct("2013-06-06", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-07-01", tz = "UTC")) ~ 2, # post-announcement pre-deployment
date_created >= as.numeric(as.POSIXct("2013-07-01", tz = "UTC"))~ 3 # post-deployment opt-out date_created >= as.numeric(as.POSIXct("2013-07-01", tz = "UTC"))~ 3 # post-deployment opt-out
)) )) |>
mutate(week_index = relative_week(date_created, as.Date("2013-07-01")))
# c2 key dates # c2 key dates
@ -43,7 +49,8 @@ c2_input_df <- c2_input_df |>
date_created >= as.numeric(as.POSIXct("2011-10-03", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-08-01", tz = "UTC")) ~ 1, # opt-in beta date_created >= as.numeric(as.POSIXct("2011-10-03", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-08-01", tz = "UTC")) ~ 1, # opt-in beta
date_created >= as.numeric(as.POSIXct("2013-08-01", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-08-28", tz = "UTC")) ~ 2, # post-announcement pre-deployment date_created >= as.numeric(as.POSIXct("2013-08-01", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-08-28", tz = "UTC")) ~ 2, # post-announcement pre-deployment
date_created >= as.numeric(as.POSIXct("2013-08-28", tz = "UTC"))~ 3 # post-deployment opt-out date_created >= as.numeric(as.POSIXct("2013-08-28", tz = "UTC"))~ 3 # post-deployment opt-out
)) )) |>
mutate(week_index = relative_week(date_created, as.Date("2013-08-28")))
# c3 key dates # c3 key dates
# opt-in = as.Date("2013-08-01) # opt-in = as.Date("2013-08-01)
@ -57,18 +64,90 @@ c3_input_df <- c3_input_df %>%
date_created >= as.numeric(as.POSIXct("2013-08-01", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2015-06-12", tz = "UTC")) ~ 1, # opt-in beta date_created >= as.numeric(as.POSIXct("2013-08-01", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2015-06-12", tz = "UTC")) ~ 1, # opt-in beta
date_created >= as.numeric(as.POSIXct("2015-06-12", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2015-07-02", tz = "UTC")) ~ 2, # post-announcement pre-deployment date_created >= as.numeric(as.POSIXct("2015-06-12", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2015-07-02", tz = "UTC")) ~ 2, # post-announcement pre-deployment
date_created >= as.numeric(as.POSIXct("2015-07-02", tz = "UTC"))~ 3 # post-deployment opt-out date_created >= as.numeric(as.POSIXct("2015-07-02", tz = "UTC"))~ 3 # post-deployment opt-out
)) )) |>
mutate(week_index = relative_week(date_created, as.Date("2015-07-02")))
# Combine the dataframes into one # Combine the dataframes into one
combined_df <- bind_rows(c1_input_df, c2_input_df, c3_input_df) combined_df <- bind_rows(c1_input_df, c2_input_df, c3_input_df)
modal_verbs <- c("can", "could", "may", "might", "must", "shall", "should", "will", "would", "ought")
modal_subset <- c('should', 'ought', 'must')
whatever_subset <- c('user')
combined_df <- combined_df %>%
group_by(AuthorPHID, source) %>%
arrange(date_created, .by_group = TRUE) %>%
mutate(
task_index_prev = cumsum(comment_type == "task_description") - (comment_type == "task_description"),
comment_index_prev = cumsum(comment_type == "task_subcomment") - (comment_type == "task_subcomment")
) %>%
ungroup() |>
rowwise() %>%
mutate(
modal_verb_count = sum(str_detect(
str_to_lower(comment_text),
paste0("\\b", modal_verbs, "\\b", collapse = "|")
)),
modal_subset_count = sum(str_detect(
str_to_lower(comment_text),
paste0("\\b", modal_subset, "\\b", collapse = "|")
)),
user_count = sum(str_detect(
str_to_lower(comment_text),
paste0("\\b", whatever_subset, "\\b", collapse = "|")
))
) %>%
ungroup() |>
filter(week_index <= 13)
combined_task_df <- combined_df %>% combined_task_df <- combined_df %>%
add_count(TaskPHID, name = "TaskPHID_count") |>
filter(comment_type == "task_description") |> filter(comment_type == "task_description") |>
mutate(time_to_close = date_closed - date_created, mutate(time_to_close = date_closed - date_created,
time_to_close_hours = as.numeric(difftime(date_closed, date_created, units = "hours")) time_to_close_hours = as.numeric(difftime(date_closed, date_created, units = "hours"))
) ) |>
group_by(AuthorPHID, source) %>%
arrange(date_created, .by_group = TRUE) %>% # recommended: order by date_created
mutate(task_index = row_number()) %>%
ungroup()
ggplot(combined_task_df, aes(x = priority_score, y = phase, color = source)) + ggplot(combined_task_df, aes(x = week_index, y = priority_score, color = source)) +
geom_point(alpha = 0.6) + # Points, with some transparency geom_point(alpha = 0.6) + # Points, with some transparency
geom_smooth(method = "loess", se = TRUE) + # LOESS curve, no confidence band geom_smooth(method = "loess", se = TRUE) + # LOESS curve, no confidence band
theme_minimal() theme_minimal()
library(stringr)
# 1. Count modal verbs in each task comment_text
combined_task_df <- combined_task_df %>%
rowwise() %>%
mutate(
modal_verb_count = sum(str_detect(
str_to_lower(comment_text),
paste0("\\b", modal_verbs, "\\b", collapse = "|")
)),
modal_subset_count = sum(str_detect(
str_to_lower(comment_text),
paste0("\\b", modal_subset, "\\b", collapse = "|")
)),
user_count = sum(str_detect(
str_to_lower(comment_text),
paste0("\\b", whatever_subset, "\\b", collapse = "|")
))
) %>%
ungroup()
library(ggdist)
ggplot(combined_df, aes(x = week_index, y = modal_verb_count, color = source, linetype=AuthorWMFAffil)) +
geom_point(alpha=0.1) + # Points, with some transparency
geom_smooth(method = "loess", se = FALSE) +
theme_minimal()
combined_task_df_subset <- subset(combined_task_df, time_to_close_hours < 1000)
ggplot(combined_task_df_subset, aes(x = TaskPHID_count, y = task_index, color = source)) +
geom_smooth(method = "loess", se = TRUE) +
geom_point(alpha=0.1) +
theme_minimal()