updating some scripts
This commit is contained in:
parent
f9c12bb445
commit
f68372572f
@ -71,7 +71,7 @@ with open("/home/nws8519/git/mw-lifecycle-analysis/p2/quest/072525_pp_biberplus_
|
||||
text_dict['task_title'] = row[1]
|
||||
text_dict['comment_text'] = row[2]
|
||||
text_dict['comment_type'] = row[12]
|
||||
raw_text = text_dict['comment_text']
|
||||
raw_text = text_dict['task_title']
|
||||
|
||||
# comment_text preprocessing per https://arxiv.org/pdf/1902.07093
|
||||
# 1. replace code with CODE
|
||||
@ -91,6 +91,7 @@ with open("/home/nws8519/git/mw-lifecycle-analysis/p2/quest/072525_pp_biberplus_
|
||||
comment_text = re.sub(r'(^|\s)@\w+', 'SCREEN_NAME', comment_text)
|
||||
# 5. split into an array of sentences
|
||||
comment_sentences = nltk.sent_tokenize(comment_text)
|
||||
text_dict['cleaned_sentences'] = comment_sentences
|
||||
|
||||
results = []
|
||||
batch_size = 2
|
||||
@ -118,7 +119,7 @@ with open("/home/nws8519/git/mw-lifecycle-analysis/p2/quest/072525_pp_biberplus_
|
||||
array_of_categorizations.append(text_dict)
|
||||
df = pd.DataFrame(array_of_categorizations)
|
||||
#print(df.head())
|
||||
df.to_csv('090425_olmo_batched_categorized.csv', index=False)
|
||||
df.to_csv('titles_090725_olmo_batched_categorized.csv', index=False)
|
||||
|
||||
|
||||
|
||||
|
@ -77,14 +77,16 @@ if __name__ == "__main__":
|
||||
#loading in the discussion data from the universal CSV
|
||||
first_discussion_df = pd.read_csv("/home/nws8519/git/mw-lifecycle-analysis/p2/071425_master_discussion_data.csv")
|
||||
#formatting for the neurobiber model
|
||||
docs = first_discussion_df["comment_text"].astype(str).tolist()
|
||||
#docs = first_discussion_df["comment_text"].astype(str).tolist()
|
||||
task_description_df = first_discussion_df[first_discussion_df['comment_type'] == "task_description"]
|
||||
docs = task_description_df['task_title'].astype(str).tolist()
|
||||
#load model and run
|
||||
#model, tokenizer = load_model_and_tokenizer()
|
||||
preds_df = biberplus_labeler(docs)
|
||||
#new columns in the df for the predicted neurobiber items
|
||||
#preds_cols = [f"neurobiber_{i+1}" for i in range(96)]
|
||||
#preds_df = pd.DataFrame(preds, columns=preds_cols, index=first_discussion_df.index)
|
||||
final_discussion_df = pd.concat([first_discussion_df, preds_df], axis=1)
|
||||
final_discussion_df = pd.concat([task_description_df, preds_df], axis=1)
|
||||
#print(type(preds))
|
||||
#assigning the preditions as a new column
|
||||
'''
|
||||
@ -95,18 +97,18 @@ if __name__ == "__main__":
|
||||
how='inner'
|
||||
)
|
||||
'''
|
||||
print(first_discussion_df)
|
||||
print(final_discussion_df)
|
||||
#print(first_discussion_df)
|
||||
#print(final_discussion_df)
|
||||
#final_discussion_df["biberplus_preds"] = list(preds)
|
||||
#assert that order has been preserved
|
||||
for _ in range(1000):
|
||||
random_index = random.randrange(len(final_discussion_df))
|
||||
assert first_discussion_df.iloc[random_index]["id"] == final_discussion_df.iloc[random_index]["id"]
|
||||
assert task_description_df.iloc[random_index]["id"] == final_discussion_df.iloc[random_index]["id"]
|
||||
#assert first_discussion_df.loc[random_index, "comment_text"] == final_discussion_df.loc[random_index, "comment_text"]
|
||||
#assert that there are the same number of rows in first_discussion_df and second_discussion_df
|
||||
assert len(first_discussion_df) == len(final_discussion_df)
|
||||
assert len(task_description_df) == len(final_discussion_df)
|
||||
final_discussion_df = final_discussion_df.drop(columns=["message"])
|
||||
# if passing the prior asserts, let's write to a csv
|
||||
final_discussion_df.to_csv("/home/nws8519/git/mw-lifecycle-analysis/p2/quest/072525_biberplus_labels.csv", index=False)
|
||||
final_discussion_df.to_csv("/home/nws8519/git/mw-lifecycle-analysis/p2/quest/090725_biberplus_title_labels.csv", index=False)
|
||||
print('biberplus labeling pau')
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user