1
0

Compare commits

..

No commits in common. "49eaade66697a539ec7d40c804bff94dad9ce443" and "9477c2cbc05e5dd99a6089f9e221fe044dbc53ee" have entirely different histories.

3 changed files with 0 additions and 147 deletions

10
.gitignore vendored
View File

@ -1,10 +0,0 @@
# ignore the R studio docker image needed by hyak
rstudio_latest.sif
# do not need to include any R items
.Rhistory
.cache/
.config/
.local/

View File

@ -1,37 +0,0 @@
library(tidyverse)
# data directory: /gscratch/comdata/users/mjilg/mw-repo-lifecycles/bot_activity_counts
# load in the paritioned directories
library(dplyr)
monthly_file_dir = "/gscratch/comdata/users/mjilg/mw-repo-lifecycles/bot_activity_counts/011625_dab_monthly/"
yearly_file_dir = "/gscratch/comdata/users/mjilg/mw-repo-lifecycles/bot_activity_counts/011625_dab_yearly/"
single_file_dir = "/gscratch/comdata/users/mjilg/mw-repo-lifecycles/bot_activity_counts/011625_dab_single/"
column_names <- c("wiki_db", "date", "event_entity", "event_action", "count")
# define a function to combing the multiple csv files in each directory
consolidate_csv <- function(directory, column_names) {
file_list <- list.files(path = directory, pattern = "*.csv", full.names = TRUE)
df_list <- lapply(file_list, function(file){
df = read.csv(file, header = FALSE)
colnames(df) <- column_names
return(df)
})
combined_df <- do.call(rbind, df_list)
return(combined_df)
}
#apply the function to our three directories of data
monthly_df <- consolidate_csv(monthly_file_dir, column_names)
yearly_df <- consolidate_csv(yearly_file_dir, column_names)
single_df <- consolidate_csv(single_file_dir, column_names)
#rbind
combined_df <- rbind(monthly_df, yearly_df, single_df)
rm(monthly_df)
rm(yearly_df)
rm(single_df)
#making sure data columns are of the right type
combined_df <- combined_df |>
mutate(
wiki_db = as.factor(wiki_db),
date = as.Date(date),
event_entity = as.factor(event_entity),
event_action = as.factor(event_action),
count = as.numeric(count)
)

View File

@ -1,100 +0,0 @@
#!/bin/sh
#SBATCH --job-name=mgaughan-rstudio-server
#SBATCH --partition=cpu-g2-mem2x
#SBATCH --time=02:00:00
#SBATCH --nodes=1
#SBATCH --ntasks=4
#SBATCH --mem=20G
#SBATCH --signal=USR2
#SBATCH --output=%x_%j.out
# This script will request a single CPU with four threads with 20GB of RAM for 2 hours.
# You can adjust --time, --nodes, --ntasks, and --mem above to adjust these settings for your session.
# --output=%x_%j.out creates a output file called rstudio-server_XXXXXXXX.out
# where the %x is short hand for --job-name above and the X's are an 8-digit
# jobID assigned by SLURM when our job is submitted.
RSTUDIO_CWD="/mmfs1/home/mjilg/git/mw-lifecycle-analysis"
RSTUDIO_SIF="rstudio_latest.sif"
# Create temp directory for ephemeral content to bind-mount in the container
RSTUDIO_TMP=$(/usr/bin/python3 -c 'import tempfile; print(tempfile.mkdtemp())')
mkdir -p -m 700 \
${RSTUDIO_TMP}/run \
${RSTUDIO_TMP}/tmp \
${RSTUDIO_TMP}/var/lib/rstudio-server
cat > ${RSTUDIO_TMP}/database.conf <<END
provider=sqlite
directory=/var/lib/rstudio-server
END
# Set OMP_NUM_THREADS to prevent OpenBLAS (and any other OpenMP-enhanced
# libraries used by R) from spawning more threads than the number of processors
# allocated to the job.
#
# Set R_LIBS_USER to a path specific to rocker/rstudio to avoid conflicts with
# personal libraries from any R installation in the host environment
cat > ${RSTUDIO_TMP}/rsession.sh <<END
#!/bin/sh
export OMP_NUM_THREADS=${SLURM_JOB_CPUS_PER_NODE}
export R_LIBS_USER=/gscratch/scrubbed/mjilg/R
exec /usr/lib/rstudio-server/bin/rsession "\${@}"
END
chmod +x ${RSTUDIO_TMP}/rsession.sh
export APPTAINER_BIND="${RSTUDIO_CWD}:${RSTUDIO_CWD},/gscratch:/gscratch,${RSTUDIO_TMP}/run:/run,${RSTUDIO_TMP}/tmp:/tmp,${RSTUDIO_TMP}/database.conf:/etc/rstudio/database.conf,${RSTUDIO_TMP}/rsession.sh:/etc/rstudio/rsession.sh,${RSTUDIO_TMP}/var/lib/rstudio-server:/var/lib/rstudio-server"
# Do not suspend idle sessions.
# Alternative to setting session-timeout-minutes=0 in /etc/rstudio/rsession.conf
export APPTAINERENV_RSTUDIO_SESSION_TIMEOUT=0
export APPTAINERENV_USER=$(id -un)
export APPTAINERENV_PASSWORD=$(openssl rand -base64 15)
# get unused socket per https://unix.stackexchange.com/a/132524
# tiny race condition between the python & apptainer commands
readonly PORT=$(/mmfs1/sw/pyenv/versions/3.9.5/bin/python -c 'import socket; s=socket.socket(); s.bind(("", 0)); print(s.getsockname()[1]); s.close()')
cat 1>&2 <<END
1. SSH tunnel from your workstation using the following command:
ssh -N -L 8787:${HOSTNAME}:${PORT} ${APPTAINERENV_USER}@klone.hyak.uw.edu
and point your web browser to http://localhost:8787
2. log in to RStudio Server using the following credentials:
user: ${APPTAINERENV_USER}
password: ${APPTAINERENV_PASSWORD}
When done using RStudio Server, terminate the job by:
1. Exit the RStudio Session ("power" button in the top right corner of the RStudio window)
2. Issue the following command on the login node:
scancel -f ${SLURM_JOB_ID}
END
source /etc/bashrc
module load apptainer
apptainer exec --cleanenv --home ${RSTUDIO_CWD} ${RSTUDIO_CWD}/${RSTUDIO_SIF} \
rserver --www-port ${PORT} \
--auth-none=0 \
--auth-pam-helper-path=pam-helper \
--auth-stay-signed-in-days=30 \
--auth-timeout-minutes=0 \
--rsession-path=/etc/rstudio/rsession.sh \
--server-user=${APPTAINERENV_USER}
APPTAINER_EXIT_CODE=$?
echo "rserver exited $APPTAINER_EXIT_CODE" 1>&2
exit $APPTAINER_EXIT_CODE