Compare commits
2 Commits
7966e92125
...
55964c754b
Author | SHA1 | Date | |
---|---|---|---|
|
55964c754b | ||
|
067fd08dd4 |
@ -1,3 +1,7 @@
|
||||
# mw-lifecycle-analysis
|
||||
|
||||
Analysis scripts and code for studying lifecycles of MediaWiki projects
|
||||
Analysis scripts and code for studying the deployment processes of three MediaWiki/Wikimedia features (2013-2015)
|
||||
|
||||
|
||||
|
||||
|
||||
|
Before Width: | Height: | Size: 781 KiB After Width: | Height: | Size: 781 KiB |
Before Width: | Height: | Size: 774 KiB After Width: | Height: | Size: 774 KiB |
Before Width: | Height: | Size: 743 KiB After Width: | Height: | Size: 743 KiB |
Before Width: | Height: | Size: 810 KiB After Width: | Height: | Size: 810 KiB |
Before Width: | Height: | Size: 670 KiB After Width: | Height: | Size: 670 KiB |
Before Width: | Height: | Size: 787 KiB After Width: | Height: | Size: 787 KiB |
Before Width: | Height: | Size: 734 KiB After Width: | Height: | Size: 734 KiB |
Before Width: | Height: | Size: 391 KiB After Width: | Height: | Size: 391 KiB |
Before Width: | Height: | Size: 431 KiB After Width: | Height: | Size: 431 KiB |
Before Width: | Height: | Size: 377 KiB After Width: | Height: | Size: 377 KiB |
Before Width: | Height: | Size: 420 KiB After Width: | Height: | Size: 420 KiB |
Before Width: | Height: | Size: 381 KiB After Width: | Height: | Size: 381 KiB |
Before Width: | Height: | Size: 421 KiB After Width: | Height: | Size: 421 KiB |
Before Width: | Height: | Size: 372 KiB After Width: | Height: | Size: 372 KiB |
Before Width: | Height: | Size: 413 KiB After Width: | Height: | Size: 413 KiB |
Before Width: | Height: | Size: 420 KiB After Width: | Height: | Size: 420 KiB |
Before Width: | Height: | Size: 425 KiB After Width: | Height: | Size: 425 KiB |
Before Width: | Height: | Size: 370 KiB After Width: | Height: | Size: 370 KiB |
Before Width: | Height: | Size: 406 KiB After Width: | Height: | Size: 406 KiB |
@ -1,45 +0,0 @@
|
||||
library(dplyr)
|
||||
contributing_df_filepath <-"/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/metadata/CONTRIBUTING_weekly_count_data.csv"
|
||||
contributing_df = read.csv(contributing_df_filepath, header = TRUE)
|
||||
|
||||
readme_df_filepath <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/metadata/README_weekly_count_data.csv"
|
||||
readme_df = read.csv(readme_df_filepath, header = TRUE)
|
||||
|
||||
combined_df <- bind_rows(
|
||||
contributing_df %>%
|
||||
group_by(project_id) %>%
|
||||
select(project_id, age_at_commit) %>%
|
||||
mutate(document = factor("CONTRIBUTING", levels = c("CONTRIBUTING", "README"))),
|
||||
readme_df %>%
|
||||
group_by(project_id) %>%
|
||||
select(project_id, age_at_commit) %>%
|
||||
mutate(document = factor("README", levels = c("CONTRIBUTING", "README")))
|
||||
)
|
||||
|
||||
unique_combined_df <- combined_df %>%
|
||||
distinct(project_id, age_at_commit, document)
|
||||
|
||||
library(tidyverse)
|
||||
library(tidyquant)
|
||||
library(ggdist)
|
||||
library(ggthemes)
|
||||
library(ggplot2)
|
||||
|
||||
age_raincloud <- unique_combined_df |>
|
||||
ggplot(aes(x = factor(document), y = age_at_commit, fill = factor(document))) +
|
||||
geom_boxplot(
|
||||
width = 0.12,
|
||||
# removing outliers
|
||||
outlier.color = NA,
|
||||
alpha = 0.5
|
||||
) +
|
||||
ggplot::stat_dots(
|
||||
# ploting on left side
|
||||
side = "left",
|
||||
# adjusting position
|
||||
justification = 1.1,
|
||||
# adjust grouping (binning) of observations
|
||||
binwidth = 0.25
|
||||
)
|
||||
|
||||
age_raincloud
|
18
mgaughan-rstudio-server_27419348.out
Normal file
@ -0,0 +1,18 @@
|
||||
1. SSH tunnel from your workstation using the following command:
|
||||
|
||||
ssh -N -L 8787:n3439:50819 mjilg@klone.hyak.uw.edu
|
||||
|
||||
and point your web browser to http://localhost:8787
|
||||
|
||||
2. log in to RStudio Server using the following credentials:
|
||||
|
||||
user: mjilg
|
||||
password: lM83HdgeT310p2tkyoCk
|
||||
|
||||
When done using RStudio Server, terminate the job by:
|
||||
|
||||
1. Exit the RStudio Session ("power" button in the top right corner of the RStudio window)
|
||||
2. Issue the following command on the login node:
|
||||
|
||||
scancel -f 27419348
|
||||
slurmstepd: error: *** JOB 27419348 ON n3439 CANCELLED AT 2025-07-07T13:08:38 ***
|
@ -34,6 +34,9 @@ c1_input_df <- c1_input_df |>
|
||||
date_created >= as.numeric(as.POSIXct("2013-06-06", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-07-01", tz = "UTC")) ~ 2, # post-announcement pre-deployment
|
||||
date_created >= as.numeric(as.POSIXct("2013-07-01", tz = "UTC"))~ 3 # post-deployment opt-out
|
||||
)) |>
|
||||
mutate(author_closer = AuthorPHID %in% CloserPHID,
|
||||
same_author = AuthorPHID == CloserPHID) |>
|
||||
mutate(closed_relevance = date_closed <= as.numeric(as.POSIXct("2013-10-01", tz = "UTC"))) |>
|
||||
mutate(week_index = relative_week(date_created, as.Date("2013-07-01")))
|
||||
|
||||
|
||||
@ -51,6 +54,9 @@ c2_input_df <- c2_input_df |>
|
||||
date_created >= as.numeric(as.POSIXct("2013-08-01", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-08-28", tz = "UTC")) ~ 2, # post-announcement pre-deployment
|
||||
date_created >= as.numeric(as.POSIXct("2013-08-28", tz = "UTC"))~ 3 # post-deployment opt-out
|
||||
)) |>
|
||||
mutate(author_closer = AuthorPHID %in% CloserPHID,
|
||||
same_author = AuthorPHID == CloserPHID) |>
|
||||
mutate(closed_relevance = date_closed <= as.numeric(as.POSIXct("2013-11-27", tz = "UTC"))) |>
|
||||
mutate(week_index = relative_week(date_created, as.Date("2013-08-28")))
|
||||
|
||||
# c3 key dates
|
||||
@ -66,6 +72,9 @@ c3_input_df <- c3_input_df %>%
|
||||
date_created >= as.numeric(as.POSIXct("2015-06-12", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2015-07-02", tz = "UTC")) ~ 2, # post-announcement pre-deployment
|
||||
date_created >= as.numeric(as.POSIXct("2015-07-02", tz = "UTC"))~ 3 # post-deployment opt-out
|
||||
)) |>
|
||||
mutate(author_closer = AuthorPHID %in% CloserPHID,
|
||||
same_author = AuthorPHID == CloserPHID) |>
|
||||
mutate(closed_relevance = date_closed <= as.numeric(as.POSIXct("2015-10-02", tz = "UTC"))) |>
|
||||
mutate(week_index = relative_week(date_created, as.Date("2015-07-02")))
|
||||
|
||||
# Combine the dataframes into one
|
||||
@ -80,7 +89,8 @@ combined_df <- combined_df %>%
|
||||
arrange(date_created, .by_group = TRUE) %>%
|
||||
mutate(
|
||||
task_index_prev = cumsum(comment_type == "task_description") - (comment_type == "task_description"),
|
||||
comment_index_prev = cumsum(comment_type == "task_subcomment") - (comment_type == "task_subcomment")
|
||||
comment_index_prev = cumsum(comment_type == "task_subcomment") - (comment_type == "task_subcomment"),
|
||||
author_prior_phab_contrib = task_index_prev + comment_index_prev
|
||||
) %>%
|
||||
ungroup() |>
|
||||
rowwise() %>%
|
||||
@ -103,52 +113,47 @@ combined_df <- combined_df %>%
|
||||
|
||||
|
||||
combined_task_df <- combined_df %>%
|
||||
add_count(TaskPHID, name = "TaskPHID_count") |>
|
||||
add_count(TaskPHID, name = "task_event_comment_count") |>
|
||||
filter(comment_type == "task_description") |>
|
||||
mutate(time_to_close = date_closed - date_created,
|
||||
time_to_close_hours = as.numeric(difftime(date_closed, date_created, units = "hours"))
|
||||
) |>
|
||||
group_by(AuthorPHID, source) %>%
|
||||
arrange(date_created, .by_group = TRUE) %>% # recommended: order by date_created
|
||||
mutate(task_index = row_number()) %>%
|
||||
mutate(author_task_index = row_number()) %>%
|
||||
ungroup()
|
||||
|
||||
ggplot(combined_task_df, aes(x = week_index, y = priority_score, color = source)) +
|
||||
geom_point(alpha = 0.6) + # Points, with some transparency
|
||||
geom_smooth(method = "loess", se = TRUE) + # LOESS curve, no confidence band
|
||||
theme_minimal()
|
||||
library(dplyr)
|
||||
|
||||
library(stringr)
|
||||
|
||||
# 1. Count modal verbs in each task comment_text
|
||||
combined_task_df <- combined_task_df %>%
|
||||
rowwise() %>%
|
||||
combined_task_df <- combined_task_df |>
|
||||
group_by(source) %>%
|
||||
mutate(
|
||||
modal_verb_count = sum(str_detect(
|
||||
str_to_lower(comment_text),
|
||||
paste0("\\b", modal_verbs, "\\b", collapse = "|")
|
||||
)),
|
||||
modal_subset_count = sum(str_detect(
|
||||
str_to_lower(comment_text),
|
||||
paste0("\\b", modal_subset, "\\b", collapse = "|")
|
||||
)),
|
||||
user_count = sum(str_detect(
|
||||
str_to_lower(comment_text),
|
||||
paste0("\\b", whatever_subset, "\\b", collapse = "|")
|
||||
))
|
||||
time_to_close_percentile = 1- percent_rank(time_to_close_hours),
|
||||
comment_count_percentile = percent_rank(task_event_comment_count),
|
||||
author_task_percentile = percent_rank(task_index_prev)
|
||||
# inverting it so that higher percentile is faster
|
||||
) %>%
|
||||
ungroup()
|
||||
|
||||
ggplot(combined_task_df, aes(x = author_task_percentile, y =priority_score, color = source)) +
|
||||
geom_point(alpha = 0.6) + # Points, with some transparency
|
||||
geom_smooth(method = "loess", se = TRUE) + # LOESS curve, no confidence band
|
||||
theme_minimal() +
|
||||
facet_grid(source ~ author_closer)
|
||||
|
||||
library(ggdist)
|
||||
ggplot(combined_df, aes(x = week_index, y = modal_subset_count, color = source, linetype=AuthorWMFAffil)) +
|
||||
geom_point(alpha=0.1) + # Points, with some transparency
|
||||
geom_smooth(method = "loess", se = FALSE) +
|
||||
theme_minimal()
|
||||
|
||||
ggplot(combined_task_df, aes(x=phase, y=comment_count_percentile)) +
|
||||
stat_slabinterval() +
|
||||
theme_minimal()+
|
||||
facet_grid(source ~ AuthorWMFAffil)
|
||||
|
||||
|
||||
closed_combined_task_df <- combined_task_df |>
|
||||
filter(!is.na(closed_relevance))
|
||||
|
||||
combined_task_df_subset <- subset(combined_task_df, time_to_close_hours < 1000)
|
||||
|
||||
ggplot(combined_task_df_subset, aes(x = TaskPHID_count, y = task_index, color = source)) +
|
||||
geom_smooth(method = "loess", se = TRUE) +
|
||||
geom_point(alpha=0.1) +
|
||||
theme_minimal()
|
||||
ggplot(combined_task_df, aes(x=time_to_close_percentile, y=priority_score)) +
|
||||
geom_point(alpha = 0.6) +
|
||||
geom_smooth(method = "loess", se = TRUE) + # LOESS curve, no confidence band# Points, with some transparency
|
||||
theme_minimal()+
|
||||
facet_grid(source ~ author_closer)
|
||||
|
@ -1,4 +0,0 @@
|
||||
library(tidyverse)
|
||||
|
||||
c1_phab <-"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case1/0228_ve_phab_comments.csv "
|
||||
c1_phab_df <- read.csv(c1_count , header = TRUE)
|
Before Width: | Height: | Size: 698 KiB After Width: | Height: | Size: 698 KiB |
Before Width: | Height: | Size: 747 KiB After Width: | Height: | Size: 747 KiB |
Before Width: | Height: | Size: 420 KiB |