1
0

Compare commits

...

2 Commits

Author SHA1 Message Date
Matthew Gaughan
55964c754b updating with new EDA 2025-07-07 13:08:58 -07:00
Matthew Gaughan
067fd08dd4 some tidying up following m2 figure creation, more needed 2025-07-07 10:44:33 -07:00
28 changed files with 62 additions and 84 deletions

View File

@ -1,3 +1,7 @@
# mw-lifecycle-analysis
Analysis scripts and code for studying lifecycles of MediaWiki projects
Analysis scripts and code for studying the deployment processes of three MediaWiki/Wikimedia features (2013-2015)

View File

Before

Width:  |  Height:  |  Size: 781 KiB

After

Width:  |  Height:  |  Size: 781 KiB

View File

Before

Width:  |  Height:  |  Size: 774 KiB

After

Width:  |  Height:  |  Size: 774 KiB

View File

Before

Width:  |  Height:  |  Size: 743 KiB

After

Width:  |  Height:  |  Size: 743 KiB

View File

Before

Width:  |  Height:  |  Size: 810 KiB

After

Width:  |  Height:  |  Size: 810 KiB

View File

Before

Width:  |  Height:  |  Size: 670 KiB

After

Width:  |  Height:  |  Size: 670 KiB

View File

Before

Width:  |  Height:  |  Size: 787 KiB

After

Width:  |  Height:  |  Size: 787 KiB

View File

Before

Width:  |  Height:  |  Size: 734 KiB

After

Width:  |  Height:  |  Size: 734 KiB

View File

Before

Width:  |  Height:  |  Size: 391 KiB

After

Width:  |  Height:  |  Size: 391 KiB

View File

Before

Width:  |  Height:  |  Size: 431 KiB

After

Width:  |  Height:  |  Size: 431 KiB

View File

Before

Width:  |  Height:  |  Size: 377 KiB

After

Width:  |  Height:  |  Size: 377 KiB

View File

Before

Width:  |  Height:  |  Size: 420 KiB

After

Width:  |  Height:  |  Size: 420 KiB

View File

Before

Width:  |  Height:  |  Size: 381 KiB

After

Width:  |  Height:  |  Size: 381 KiB

View File

Before

Width:  |  Height:  |  Size: 421 KiB

After

Width:  |  Height:  |  Size: 421 KiB

View File

Before

Width:  |  Height:  |  Size: 372 KiB

After

Width:  |  Height:  |  Size: 372 KiB

View File

Before

Width:  |  Height:  |  Size: 413 KiB

After

Width:  |  Height:  |  Size: 413 KiB

View File

Before

Width:  |  Height:  |  Size: 420 KiB

After

Width:  |  Height:  |  Size: 420 KiB

View File

Before

Width:  |  Height:  |  Size: 425 KiB

After

Width:  |  Height:  |  Size: 425 KiB

View File

Before

Width:  |  Height:  |  Size: 370 KiB

After

Width:  |  Height:  |  Size: 370 KiB

View File

Before

Width:  |  Height:  |  Size: 406 KiB

After

Width:  |  Height:  |  Size: 406 KiB

View File

@ -1,45 +0,0 @@
library(dplyr)
contributing_df_filepath <-"/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/metadata/CONTRIBUTING_weekly_count_data.csv"
contributing_df = read.csv(contributing_df_filepath, header = TRUE)
readme_df_filepath <- "/mmfs1/gscratch/comdata/users/mjilg/govdoc-cr-data/final_data/metadata/README_weekly_count_data.csv"
readme_df = read.csv(readme_df_filepath, header = TRUE)
combined_df <- bind_rows(
contributing_df %>%
group_by(project_id) %>%
select(project_id, age_at_commit) %>%
mutate(document = factor("CONTRIBUTING", levels = c("CONTRIBUTING", "README"))),
readme_df %>%
group_by(project_id) %>%
select(project_id, age_at_commit) %>%
mutate(document = factor("README", levels = c("CONTRIBUTING", "README")))
)
unique_combined_df <- combined_df %>%
distinct(project_id, age_at_commit, document)
library(tidyverse)
library(tidyquant)
library(ggdist)
library(ggthemes)
library(ggplot2)
age_raincloud <- unique_combined_df |>
ggplot(aes(x = factor(document), y = age_at_commit, fill = factor(document))) +
geom_boxplot(
width = 0.12,
# removing outliers
outlier.color = NA,
alpha = 0.5
) +
ggplot::stat_dots(
# ploting on left side
side = "left",
# adjusting position
justification = 1.1,
# adjust grouping (binning) of observations
binwidth = 0.25
)
age_raincloud

View File

@ -0,0 +1,18 @@
1. SSH tunnel from your workstation using the following command:
ssh -N -L 8787:n3439:50819 mjilg@klone.hyak.uw.edu
and point your web browser to http://localhost:8787
2. log in to RStudio Server using the following credentials:
user: mjilg
password: lM83HdgeT310p2tkyoCk
When done using RStudio Server, terminate the job by:
1. Exit the RStudio Session ("power" button in the top right corner of the RStudio window)
2. Issue the following command on the login node:
scancel -f 27419348
slurmstepd: error: *** JOB 27419348 ON n3439 CANCELLED AT 2025-07-07T13:08:38 ***

View File

@ -34,6 +34,9 @@ c1_input_df <- c1_input_df |>
date_created >= as.numeric(as.POSIXct("2013-06-06", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-07-01", tz = "UTC")) ~ 2, # post-announcement pre-deployment
date_created >= as.numeric(as.POSIXct("2013-07-01", tz = "UTC"))~ 3 # post-deployment opt-out
)) |>
mutate(author_closer = AuthorPHID %in% CloserPHID,
same_author = AuthorPHID == CloserPHID) |>
mutate(closed_relevance = date_closed <= as.numeric(as.POSIXct("2013-10-01", tz = "UTC"))) |>
mutate(week_index = relative_week(date_created, as.Date("2013-07-01")))
@ -51,6 +54,9 @@ c2_input_df <- c2_input_df |>
date_created >= as.numeric(as.POSIXct("2013-08-01", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-08-28", tz = "UTC")) ~ 2, # post-announcement pre-deployment
date_created >= as.numeric(as.POSIXct("2013-08-28", tz = "UTC"))~ 3 # post-deployment opt-out
)) |>
mutate(author_closer = AuthorPHID %in% CloserPHID,
same_author = AuthorPHID == CloserPHID) |>
mutate(closed_relevance = date_closed <= as.numeric(as.POSIXct("2013-11-27", tz = "UTC"))) |>
mutate(week_index = relative_week(date_created, as.Date("2013-08-28")))
# c3 key dates
@ -66,6 +72,9 @@ c3_input_df <- c3_input_df %>%
date_created >= as.numeric(as.POSIXct("2015-06-12", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2015-07-02", tz = "UTC")) ~ 2, # post-announcement pre-deployment
date_created >= as.numeric(as.POSIXct("2015-07-02", tz = "UTC"))~ 3 # post-deployment opt-out
)) |>
mutate(author_closer = AuthorPHID %in% CloserPHID,
same_author = AuthorPHID == CloserPHID) |>
mutate(closed_relevance = date_closed <= as.numeric(as.POSIXct("2015-10-02", tz = "UTC"))) |>
mutate(week_index = relative_week(date_created, as.Date("2015-07-02")))
# Combine the dataframes into one
@ -80,7 +89,8 @@ combined_df <- combined_df %>%
arrange(date_created, .by_group = TRUE) %>%
mutate(
task_index_prev = cumsum(comment_type == "task_description") - (comment_type == "task_description"),
comment_index_prev = cumsum(comment_type == "task_subcomment") - (comment_type == "task_subcomment")
comment_index_prev = cumsum(comment_type == "task_subcomment") - (comment_type == "task_subcomment"),
author_prior_phab_contrib = task_index_prev + comment_index_prev
) %>%
ungroup() |>
rowwise() %>%
@ -103,52 +113,47 @@ combined_df <- combined_df %>%
combined_task_df <- combined_df %>%
add_count(TaskPHID, name = "TaskPHID_count") |>
add_count(TaskPHID, name = "task_event_comment_count") |>
filter(comment_type == "task_description") |>
mutate(time_to_close = date_closed - date_created,
time_to_close_hours = as.numeric(difftime(date_closed, date_created, units = "hours"))
) |>
group_by(AuthorPHID, source) %>%
arrange(date_created, .by_group = TRUE) %>% # recommended: order by date_created
mutate(task_index = row_number()) %>%
mutate(author_task_index = row_number()) %>%
ungroup()
ggplot(combined_task_df, aes(x = week_index, y = priority_score, color = source)) +
geom_point(alpha = 0.6) + # Points, with some transparency
geom_smooth(method = "loess", se = TRUE) + # LOESS curve, no confidence band
theme_minimal()
library(dplyr)
library(stringr)
# 1. Count modal verbs in each task comment_text
combined_task_df <- combined_task_df %>%
rowwise() %>%
combined_task_df <- combined_task_df |>
group_by(source) %>%
mutate(
modal_verb_count = sum(str_detect(
str_to_lower(comment_text),
paste0("\\b", modal_verbs, "\\b", collapse = "|")
)),
modal_subset_count = sum(str_detect(
str_to_lower(comment_text),
paste0("\\b", modal_subset, "\\b", collapse = "|")
)),
user_count = sum(str_detect(
str_to_lower(comment_text),
paste0("\\b", whatever_subset, "\\b", collapse = "|")
))
time_to_close_percentile = 1- percent_rank(time_to_close_hours),
comment_count_percentile = percent_rank(task_event_comment_count),
author_task_percentile = percent_rank(task_index_prev)
# inverting it so that higher percentile is faster
) %>%
ungroup()
ggplot(combined_task_df, aes(x = author_task_percentile, y =priority_score, color = source)) +
geom_point(alpha = 0.6) + # Points, with some transparency
geom_smooth(method = "loess", se = TRUE) + # LOESS curve, no confidence band
theme_minimal() +
facet_grid(source ~ author_closer)
library(ggdist)
ggplot(combined_df, aes(x = week_index, y = modal_subset_count, color = source, linetype=AuthorWMFAffil)) +
geom_point(alpha=0.1) + # Points, with some transparency
geom_smooth(method = "loess", se = FALSE) +
theme_minimal()
ggplot(combined_task_df, aes(x=phase, y=comment_count_percentile)) +
stat_slabinterval() +
theme_minimal()+
facet_grid(source ~ AuthorWMFAffil)
closed_combined_task_df <- combined_task_df |>
filter(!is.na(closed_relevance))
combined_task_df_subset <- subset(combined_task_df, time_to_close_hours < 1000)
ggplot(combined_task_df_subset, aes(x = TaskPHID_count, y = task_index, color = source)) +
geom_smooth(method = "loess", se = TRUE) +
geom_point(alpha=0.1) +
theme_minimal()
ggplot(combined_task_df, aes(x=time_to_close_percentile, y=priority_score)) +
geom_point(alpha = 0.6) +
geom_smooth(method = "loess", se = TRUE) + # LOESS curve, no confidence band# Points, with some transparency
theme_minimal()+
facet_grid(source ~ author_closer)

View File

@ -1,4 +0,0 @@
library(tidyverse)
c1_phab <-"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case1/0228_ve_phab_comments.csv "
c1_phab_df <- read.csv(c1_count , header = TRUE)

View File

Before

Width:  |  Height:  |  Size: 698 KiB

After

Width:  |  Height:  |  Size: 698 KiB

View File

Before

Width:  |  Height:  |  Size: 747 KiB

After

Width:  |  Height:  |  Size: 747 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 420 KiB