{ "cells": [ { "cell_type": "code", "execution_count": 2, "id": "b270bd36-529e-4595-a780-ef6c8151c31f", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/gscratch/scrubbed/mjilg/envs/coref-notebook/lib/python3.10/site-packages/torch/cuda/__init__.py:734: UserWarning: Can't initialize NVML\n", " warnings.warn(\"Can't initialize NVML\")\n" ] } ], "source": [ "import pandas as pd \n", "import spacy" ] }, { "cell_type": "code", "execution_count": 3, "id": "f6448c6f-2b5d-45f5-a32e-b3b47c16ef85", "metadata": {}, "outputs": [], "source": [ "phab_path = \"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case1/0228_ve_phab_comments.csv\"\n", "phab_df = pd.read_csv(phab_path)" ] }, { "cell_type": "code", "execution_count": 4, "id": "f32f6eed-3aeb-4b05-8d40-7ed85e7235c5", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/gscratch/scrubbed/mjilg/envs/coref-notebook/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n", "/gscratch/scrubbed/mjilg/envs/coref-notebook/lib/python3.10/site-packages/spacy/util.py:910: UserWarning: [W095] Model 'en_coreference_web_trf' (3.4.0a2) was trained with spaCy v3.3.0 and may not be 100% compatible with the current version (3.7.5). If you see errors or degraded performance, download a newer compatible model or retrain your custom model with the current spaCy version. For more details and available updates, run: python -m spacy validate\n", " warnings.warn(warn_msg)\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nlp = spacy.load(\"en_core_web_trf\")\n", "nlp_coref = spacy.load(\"en_coreference_web_trf\")\n", "\n", "# use replace_listeners for the coref components\n", "nlp_coref.replace_listeners(\"transformer\", \"coref\", [\"model.tok2vec\"])\n", "nlp_coref.replace_listeners(\"transformer\", \"span_resolver\", [\"model.tok2vec\"])\n", "\n", "# we won't copy over the span cleaner - this keeps the head cluster information, which we want\n", "nlp.add_pipe(\"merge_entities\")\n", "nlp.add_pipe(\"coref\", source=nlp_coref)\n", "nlp.add_pipe(\"span_resolver\", source=nlp_coref)" ] }, { "cell_type": "code", "execution_count": 57, "id": "a5b062d8-2d26-4a3e-a84c-ba0eaf6eb436", "metadata": {}, "outputs": [], "source": [ "# https://github.com/explosion/spaCy/discussions/13572\n", "# https://github.com/explosion/spaCy/issues/13111 \n", "# https://explosion.ai/blog/coref\n", "# https://gist.github.com/thomashacker/b5dd6042c092e0a22c2b9243a64a2466\n", "doc = nlp(\"John is frustrated with the VisualEditor project, he thinks it doesn't work.\")\n" ] }, { "cell_type": "code", "execution_count": 71, "id": "999e1656-0036-4ba2-bedf-f54493f67790", "metadata": {}, "outputs": [], "source": [ "# https://gist.github.com/thomashacker/b5dd6042c092e0a22c2b9243a64a2466\n", "from spacy.tokens import Doc\n", "# Define lightweight function for resolving references in text\n", "def resolve_references(doc: Doc) -> str:\n", " \"\"\"Function for resolving references with the coref ouput\n", " doc (Doc): The Doc object processed by the coref pipeline\n", " RETURNS (str): The Doc string with resolved references\n", " \"\"\"\n", " # token.idx : token.text\n", " token_mention_mapper = {}\n", " output_string = \"\"\n", " clusters = [\n", " val for key, val in doc.spans.items() if key.startswith(\"coref_cluster\")\n", " ]\n", "\n", " # Iterate through every found cluster\n", " for cluster in clusters:\n", " first_mention = cluster[0]\n", " # Iterate through every other span in the cluster\n", " for mention_span in list(cluster)[1:]:\n", " # Set first_mention as value for the first token in mention_span in the token_mention_mapper\n", " token_mention_mapper[mention_span[0].idx] = first_mention.text + mention_span[0].whitespace_\n", " \n", " for token in mention_span[1:]:\n", " # Set empty string for all the other tokens in mention_span\n", " token_mention_mapper[token.idx] = \"\"\n", "\n", " # Iterate through every token in the Doc\n", " for token in doc:\n", " # Check if token exists in token_mention_mapper\n", " if token.idx in token_mention_mapper:\n", " output_string += token_mention_mapper[token.idx]\n", " # Else add original token text\n", " else:\n", " output_string += token.text + token.whitespace_\n", "\n", " return output_string\n" ] }, { "cell_type": "code", "execution_count": 72, "id": "be476647-624b-4e95-ab62-9c6b08f85368", "metadata": {}, "outputs": [], "source": [ "def resolving_comment(text):\n", " doc = nlp(text)\n", " resolved_text = resolve_references(doc)\n", " return resolved_text" ] }, { "cell_type": "code", "execution_count": 73, "id": "a9628b54-a1df-49cd-a365-9cba59de3421", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'i hate ve.interface, ve.interface always messes up i browser'" ] }, "execution_count": 73, "metadata": {}, "output_type": "execute_result" } ], "source": [ "resolving_comment(\"i hate ve.interface, it always messes up my browser\")" ] }, { "cell_type": "code", "execution_count": null, "id": "46873641-8e88-4829-9e24-4dd5e6749bd1", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/gscratch/scrubbed/mjilg/envs/coref-notebook/lib/python3.10/site-packages/thinc/shims/pytorch.py:114: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\n", " with torch.cuda.amp.autocast(self._mixed_precision):\n" ] } ], "source": [ "phab_df['text'] = phab_df['comment_text'].apply(str)\n", "phab_df['resolved_text'] = phab_df['text'].apply(resolving_comment)" ] }, { "cell_type": "code", "execution_count": null, "id": "2b583feb-1c62-4c96-9ba0-2996d72e70d3", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }