library(tidyverse) c1_count <-"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case1/062725_c1_cleaned_phab.csv" c1_input_df <- read.csv(c1_count , header = TRUE) c2_count <-"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case2/062725_c2_cleaned_phab.csv" c2_input_df <- read.csv(c2_count , header = TRUE) c3_count <-"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case3/062725_c3_cleaned_phab.csv" c3_input_df <- read.csv(c3_count , header = TRUE) #phase of feature deployments # pre opt-in (0) # opt-in beta (1) # post-announcement pre-deployment (2) # post-deployment opt-out (3) # c1 key dates # opt-in = as.Date("2012-12-11) # deployment announcement = as.Date("2013-06-06") # deployment_date <- as.Date("2013-07-01") c1_input_df <- c1_input_df |> mutate(date_created = as.numeric(as.POSIXct(date_created, tz = "UTC"))) |> mutate(source = "c1") |> mutate(phase = case_when( date_created < as.numeric(as.POSIXct("2012-12-11", tz = "UTC")) ~ 0, # pre opt-in date_created >= as.numeric(as.POSIXct("2012-12-11", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-06-06", tz = "UTC")) ~ 1, # opt-in beta date_created >= as.numeric(as.POSIXct("2013-06-06", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-07-01", tz = "UTC")) ~ 2, # post-announcement pre-deployment date_created >= as.numeric(as.POSIXct("2013-07-01", tz = "UTC"))~ 3 # post-deployment opt-out )) # c2 key dates # opt-in = as.Date("2011-10-03) # deployment announcement = as.Date("2013-08-01") # deployment_date <- as.Date("2013-08-28") c2_input_df <- c2_input_df |> mutate(date_created = as.numeric(as.POSIXct(date_created, tz = "UTC"))) |> mutate(source = "c2") |> mutate(phase = case_when( date_created < as.numeric(as.POSIXct("2011-10-03", tz = "UTC")) ~ 0, # pre opt-in date_created >= as.numeric(as.POSIXct("2011-10-03", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-08-01", tz = "UTC")) ~ 1, # opt-in beta date_created >= as.numeric(as.POSIXct("2013-08-01", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2013-08-28", tz = "UTC")) ~ 2, # post-announcement pre-deployment date_created >= as.numeric(as.POSIXct("2013-08-28", tz = "UTC"))~ 3 # post-deployment opt-out )) # c3 key dates # opt-in = as.Date("2013-08-01) # deployment announcement = as.Date("2015-06-12") # deployment_date <- as.Date("2015-07-02") c3_input_df <- c3_input_df %>% mutate(date_created = as.numeric(as.POSIXct(date_created, tz = "UTC"))) |> mutate(source = "c3") |> mutate(phase = case_when( date_created < as.numeric(as.POSIXct("2013-08-01", tz = "UTC")) ~ 0, # pre opt-in date_created >= as.numeric(as.POSIXct("2013-08-01", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2015-06-12", tz = "UTC")) ~ 1, # opt-in beta date_created >= as.numeric(as.POSIXct("2015-06-12", tz = "UTC")) & date_created < as.numeric(as.POSIXct("2015-07-02", tz = "UTC")) ~ 2, # post-announcement pre-deployment date_created >= as.numeric(as.POSIXct("2015-07-02", tz = "UTC"))~ 3 # post-deployment opt-out )) # Combine the dataframes into one combined_df <- bind_rows(c1_input_df, c2_input_df, c3_input_df) combined_task_df <- combined_df %>% filter(comment_type == "task_description") |> mutate(time_to_close = date_closed - date_created, time_to_close_hours = as.numeric(difftime(date_closed, date_created, units = "hours")) ) ggplot(combined_task_df, aes(x = priority_score, y = phase, color = source)) + geom_point(alpha = 0.6) + # Points, with some transparency geom_smooth(method = "loess", se = TRUE) + # LOESS curve, no confidence band theme_minimal()