from sklearn.decomposition import PCA, KernelPCA from sklearn.preprocessing import LabelEncoder import pandas as pd #import torch import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import pickle # List of the 96 features that Neurobiber can predict BIBER_FEATURES = [ "BIN_QUAN","BIN_QUPR","BIN_AMP","BIN_PASS","BIN_XX0","BIN_JJ", "BIN_BEMA","BIN_CAUS","BIN_CONC","BIN_COND","BIN_CONJ","BIN_CONT", "BIN_DPAR","BIN_DWNT","BIN_EX","BIN_FPP1","BIN_GER","BIN_RB", "BIN_PIN","BIN_INPR","BIN_TO","BIN_NEMD","BIN_OSUB","BIN_PASTP", "BIN_VBD","BIN_PHC","BIN_PIRE","BIN_PLACE","BIN_POMD","BIN_PRMD", "BIN_WZPRES","BIN_VPRT","BIN_PRIV","BIN_PIT","BIN_PUBV","BIN_SPP2", "BIN_SMP","BIN_SERE","BIN_STPR","BIN_SUAV","BIN_SYNE","BIN_TPP3", "BIN_TIME","BIN_NOMZ","BIN_BYPA","BIN_PRED","BIN_TOBJ","BIN_TSUB", "BIN_THVC","BIN_NN","BIN_DEMP","BIN_DEMO","BIN_WHQU","BIN_EMPH", "BIN_HDG","BIN_WZPAST","BIN_THAC","BIN_PEAS","BIN_ANDC","BIN_PRESP", "BIN_PROD","BIN_SPAU","BIN_SPIN","BIN_THATD","BIN_WHOBJ","BIN_WHSUB", "BIN_WHCL","BIN_ART","BIN_AUXB","BIN_CAP","BIN_SCONJ","BIN_CCONJ", "BIN_DET","BIN_EMOJ","BIN_EMOT","BIN_EXCL","BIN_HASH","BIN_INF", "BIN_UH","BIN_NUM","BIN_LAUGH","BIN_PRP","BIN_PREP","BIN_NNP", "BIN_QUES","BIN_QUOT","BIN_AT","BIN_SBJP","BIN_URL","BIN_WH", "BIN_INDA","BIN_ACCU","BIN_PGAS","BIN_CMADJ","BIN_SPADJ","BIN_X" ] def format_df_data(df): #this accounts for the somewhat idiosyncratic way that I saved my data normalized_cols = [col for col in df.columns if col.startswith('normalized_')] x = df[normalized_cols].astype(float).values #x = np.vstack(df['features'].values) return x if __name__ == "__main__": biber_vec_df = pd.read_csv("/home/nws8519/git/mw-lifecycle-analysis/p2/quest/092325_biberplus_complete_labels.csv", low_memory=False) biber_vec_df = biber_vec_df[biber_vec_df['comment_type'] == 'task_description'] #biber_vec_df = biber_vec_df[biber_vec_df['AuthorPHID'] != "PHID-USER-idceizaw6elwiwm5xshb"] #biber_vec_df = biber_vec_df[biber_vec_df['comment_text'] != 'nan'] biber_vecs = format_df_data(biber_vec_df) #handoff to PCA model ''' pca_trial = PCA() biber_vecs_pca_trial = pca_trial.fit_transform(biber_vecs) explained_variance = pca_trial.explained_variance_ratio_ cumulative_variance = np.cumsum(explained_variance) n_components = np.argmax(cumulative_variance >= 0.90) + 1 print(f"Number of PCs explaining 90% variance: {n_components}") ''' pca = PCA(n_components=18) biber_vecs_pca = pca.fit_transform(biber_vecs) with open('092525_description_pca.pkl', 'wb') as f: pickle.dump(pca, f) selected_axis = "closed_relevance" component_variances = np.var(biber_vecs_pca, axis=0) print("Variance of each PCA component:", component_variances) for i, component in enumerate(pca.components_): print(f"PC{i+1}:") indices = np.argsort(np.abs(component))[::-1] for idx in indices[:10]: # Top 10 print(f" {BIBER_FEATURES[idx]}: {component[idx]:.3f}") #first looking at comment_type le = LabelEncoder() colors = le.fit_transform(biber_vec_df[selected_axis]) pc_dict = {f"PC{i+1}": biber_vecs_pca[:, i] for i in range(18)} pc_dict[selected_axis] = biber_vec_df[selected_axis].astype(str) pc_dict["source"] = biber_vec_df['source'].astype(str) pc_dict["phase"] = biber_vec_df['phase'].astype(str) pc_dict["text"] = biber_vec_df['comment_text'].astype(str) pc_dict['id'] = biber_vec_df['id'] pc_dict['week_index'] = biber_vec_df['week_index'] pc_dict['priority'] = biber_vec_df['priority'] pc_dict['closed_relevance'] = biber_vec_df['closed_relevance'] plot_df = pd.DataFrame(pc_dict) #plot_df.to_csv("092325_subcomment_PCA_df.csv", index=False) print("Top 10 PC1 values:") print(plot_df.nlargest(10, "PC1")) print("\nBottom 10 PC1 values:") print(plot_df.nsmallest(10, "PC1")) print("Top 10 PC2 values:") print(plot_df.nlargest(10, "PC2")) print("\nBottom 10 PC2 values:") print(plot_df.nsmallest(10, "PC2")) g = sns.FacetGrid(plot_df, col="source", row="phase", hue=selected_axis, palette="tab10", height=4, sharex=False, sharey=False) g.map_dataframe(sns.scatterplot, x="PC1", y="PC2", alpha=0.7, s=40) g.add_legend(title=selected_axis) g.set_axis_labels("PC1", "PC2") g.fig.subplots_adjust(top=0.9) g.fig.suptitle(f"PCA by {selected_axis}, faceted by source") #plt.savefig("090225_biber_pca_plot.png", dpi=300) ''' plot_df = pd.DataFrame({ "PC1": biber_vecs_pca[:, 0], "PC2": biber_vecs_pca[:, 1], selected_axis: biber_vec_df[selected_axis].astype(str) }) plt.figure(figsize=(8,6)) sns.scatterplot( data=plot_df, x="PC1", y="PC2", hue="source", palette="tab10", s=40, alpha=0.7, edgecolor=None ) plt.xlabel('component 1') plt.ylabel('component 2') plt.legend(title=selected_axis, bbox_to_anchor=(1.05, 1), loc=2) ''' g.fig.tight_layout() g.savefig(f"description_{selected_axis}_092525_biber_pca_final.png", dpi=300) plt.show()