library(tidyverse) #library(dsl) library(dplyr) dsl_csv <-"~/dsl/110925_DSL_df_adac.csv" dsl_df <- read.csv(dsl_csv, header = TRUE) outcome_summary <- dsl_df |> group_by(source, isAuthorWMF)|> summarise( total_sum = sum(!is.na(resolution_outcome)), count_resolution_outcome = sum(resolution_outcome), success_prop = count_resolution_outcome / total_sum, median_ttr_days = median(TTR, na.rm = TRUE) / 24, median_comments_before_resolution = median(n_comments_before) ) library(ggplot2) library(ggdist) ggplot( dsl_df, aes( x=n_comments_before, color=source, fill=source ) ) + facet_grid(~isAuthorWMF) + stat_halfeye() + theme_minimal() dsl_df <- dsl_df |> mutate(priority = factor(priority, levels = c("Unbreak Now!", "High", "Medium", "Low", "Lowest", "Needs Triage"))) ggplot(dsl_df, aes( fill=resolution_outcome, x=priority )) + facet_grid(~source) + geom_bar() + theme_minimal() signed_power <- function(x, p) { sign(x) * abs(x) ^ p } signed_log <- function(x) sign(x) * log1p(abs(x)) dsl_df <- dsl_df |> mutate( sp_med_pc3_adac = signed_power(median_PC3_adac, 0.2), sp_med_pc4_adac = signed_power(median_PC4_adac, 0.2), sl_med_pc4_adac = signed_log(median_PC4_adac), sl_med_pc3_adac = signed_log(median_PC3_adac) ) ggplot(dsl_df, aes( y= log1p(TTR/24), x=sl_med_pc4_adac, shape=isAuthorWMF, color=isAuthorWMF )) + facet_grid(~source) + theme_minimal() + geom_smooth(method="loess", span=0.5) + geom_point() + scale_color_viridis_d()