1
0
mw-lifecycle-analysis/p2/quest/adac_analysis.R

42 lines
1.1 KiB
R

library(tidyverse)
main_csv <- "~/dsl/102725_DSL_df_adac.csv"
main_df <- read.csv(main_csv , header = TRUE)
main_df <- main_df |>
mutate(
pc_adac_delta = median_PC4_no_adac - median_PC4_adac,
olmo_BI_adac_delta = olmo_BI_prop_no_adac - olmo_BI_prop_adac
)
ggplot(main_df, aes(
x = as.factor(phase), # x-axis grouping
y = olmo_BI_adac_delta,
fill = resolution_outcome
)) +
ylim(-3, 3) +
geom_boxplot(alpha = 0.7, position = position_dodge(width = 0.9)) +
facet_grid(. ~ source, scales = "fixed") + # Facet by source; adjust as needed
scale_fill_viridis_d() +
theme_minimal() +
labs(
title = "Boxplot of PC4",
x = "Comment_type",
y = "PC4",
fill = "isAuthorWMF?"
)
ggplot(main_df, aes(x = week_index,
y = median_PC3_adac, fill = resolution_outcome)) +
facet_grid(~source, scales="fixed") +
geom_point(shape = 21, alpha=0.3, size=2) +
scale_fill_viridis_d() +
theme_minimal() +
labs(
title = "PCs for Task Comments (Faceted by source and phase)",
x = "PC4",
y = "PC3",
)
lm(main_df$human_BE_prop ~ main_df$median_PC1)