1
0
mw-lifecycle-analysis/dsl/dsl.R
2025-11-20 15:02:19 -08:00

112 lines
3.8 KiB
R

library(tidyverse)
library(dsl)
dsl_csv <-"111725_DSL_frame.csv"
dsl_df <- read.csv(dsl_csv, header = TRUE)
dsl_df <- dsl_df |>
dplyr::mutate(ttr_days = TTR / 24) |>
dplyr::mutate(task_resolution = dsl_score)
base_model <- dsl(
model = "logit",
formula = dsl_score ~ human_EP_prop_adac,
predicted_var = "human_EP_prop_adac",
prediction = "olmo_EP_prop_adac",
sample_prob = "sampling_prob",
data=dsl_df
)
summary(base_model)
case_model <- dsl(
model = "logit",
formula = dsl_score ~ human_EP_prop_adac + as.factor(source),
predicted_var = "human_EP_prop_adac",
prediction = "olmo_EP_prop_adac",
sample_prob = "sampling_prob",
data=dsl_df
)
summary(case_model)
logit_model <- dsl(
model = "logit",
formula = dsl_score ~ human_EP_prop_adac + human_TSOL_prop_adac + human_RK_prop_adac
+ week_index + as.factor(isAuthorWMF) + median_PC4_adac + median_PC3_adac + n_comments_before + as.factor(source) +
median_gerrit_reviewers,
predicted_var = c("human_EP_prop_adac", "human_TSOL_prop_adac", "human_RK_prop_adac"),
prediction = c("olmo_EP_prop_adac", "olmo_TSOL_prop_adac", "olmo_RK_prop_adac"),
sample_prob = "sampling_prob",
cluster="source",
cross_fit = 3,
sample_split = 20,
data=dsl_df
)
summary(logit_model)
#anova(dsl_df$olmo_RK_prop, dsl_df$median_gerrit_reviewers)
#chisq.test(table(dsl_df$isAuthorWMF, dsl_df$author_closer))
# https://cscu.cornell.edu/wp-content/uploads/clust.pdf
# https://statmodeling.stat.columbia.edu/2020/01/10/linear-or-logistic-regression-with-binary-outcomes/
# https://osf.io/preprints/psyarxiv/4gmbv_v1
felm_model <- dsl(
model = "felm",
formula = dsl_score ~ human_EP_prop_adac + human_TSOL_prop_adac + human_RK_prop_adac +
phase
+ median_PC4_adac + median_PC3_adac + n_comments_before + + isAuthorWMF,
predicted_var = c("human_EP_prop_adac", "human_TSOL_prop_adac", "human_RK_prop_adac"),
prediction = c("olmo_EP_prop_adac", "olmo_TSOL_prop_adac", "olmo_RK_prop_adac"),
sample_prob = "sampling_prob",
fixed_effect = "oneway",
index = c("source"),
cluster="source",
cross_fit = 3,
sample_split = 20,
data=felm_df
)
summary(felm_model)
#httpsfelm_model#https://github.com/naoki-egami/dsl/blob/537664a54163dda52ee277071fdfd9e8df2572a6/R/estimate_g.R#L39
dev_model <- dsl(
model = "logit",
formula = task_resolution ~ human_EP_prop_adac + human_TSOL_prop_adac + human_RK_prop_adac
+ median_PC4_adac + median_PC3_adac + n_comments_before
+ median_gerrit_reviewers + median_gerrit_loc_delta
+ week_index + as.factor(source) * as.factor(isAuthorWMF),
predicted_var = c("human_EP_prop_adac", "human_TSOL_prop_adac", "human_RK_prop_adac"),
prediction = c("olmo_EP_prop_adac", "olmo_TSOL_prop_adac", "olmo_RK_prop_adac"),
sample_prob = "sampling_prob",
cluster="source",
cross_fit = 3,
sample_split = 20,
data=dsl_df
)
summary(dev_model)
library(broom)
library(dplyr)
tidy.dsl <- function(x, conf.int = FALSE, conf.level = 0.95, exponentiate = FALSE, ...) {
res <- suppressMessages(dsl:::summary.dsl(object = x, ci = conf.level, ...))
terms <- row.names(res)
cols <- c("estimate" = "Estimate", "std.error" = "Std. Error", "p.value" = "p value")
if (conf.int) {
cols <- c(cols, "conf.low" = "CI Lower", "conf.high" = "CI Upper")
}
out <- as.list(res)[cols]
names(out) <- names(cols)
out <- as_tibble(as.data.frame(out))
out <- dplyr::bind_cols(term = terms, out)
if (exponentiate)
out <- broom:::exponentiate(out)
return(out)
}
coef_df <- tidy.dsl(dev_model)
ggplot(coef_df, aes(x = estimate, y = term)) +
geom_point(size = 1) +
geom_errorbar(aes(xmin = estimate - 1.96*std.error, xmax = estimate + 1.96 *std.error), height = 0.2) +
geom_vline(xintercept = 0, linetype = "dashed", color = "red") +
labs(title = "Fixed Effects Model Coefficients",
x = "Coefficient Estimate",
y = "Variable") +
theme_minimal()