1
0
mw-lifecycle-analysis/commit_analysis/matched_rdd_models.R
2025-03-01 17:08:16 -08:00

135 lines
5.2 KiB
R

library(tidyverse)
entest_fp <-"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case1/en-testing_0217_extensions_ve_weekly_commit_count_data.csv"
entest_df <- read.csv(entest_fp, header = TRUE) |> mutate(rd_event = "en-testing")
widetest_fp <-"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case1/wide-testing_0217_extensions_ve_weekly_commit_count_data.csv"
widetest_df <- read.csv(widetest_fp, header = TRUE) |> mutate(rd_event = "wide-testing")
event_fp <-"/mmfs1/gscratch/comdata/users/mjilg/mw-repo-lifecycles/case1/event_0217_extensions_ve_weekly_commit_count_data.csv"
event_df <- read.csv(event_fp, header = TRUE) |> mutate(rd_event = "default")
#input_df <- bind_rows(entest_df, widetest_df, event_df)
#dropping the event (2013-07-01) from the modeling
input_df <- bind_rows(entest_df, widetest_df)
input_df <- input_df |>
mutate(nonbot_commit_count = commit_count - bot_commit_count)|>
mutate(other_commit_count = nonbot_commit_count - mediawiki_dev_commit_count - wikia_commit_count - wikimedia_commit_count) |>
mutate(wikimedia_commit_count = wikimedia_commit_count + mediawiki_dev_commit_count + wikia_commit_count) |>
dplyr::select(-mediawiki_dev_commit_count) |>
dplyr::select(-wikia_commit_count)
library(MASS)
library(lme4)
library(dplyr)
#get into mlm format
long_df <- input_df |>
pivot_longer(cols = c(other_commit_count, wikimedia_commit_count),
names_to = "commit_type",
values_to = "lengthened_commit_count")
intermediate_long_df <- long_df |>
mutate(commit_share = lengthened_commit_count / (nonbot_commit_count)) |>
mutate(log_commits = log1p(lengthened_commit_count))|>
mutate(scaled_long_commits = lengthened_commit_count / 10)
library(rdd)
intermediate_long_df <- intermediate_long_df |>
drop_na()
var(intermediate_long_df$lengthened_commit_count) # 1253.343
mean(intermediate_long_df$lengthened_commit_count) # 44.92381
median(intermediate_long_df$lengthened_commit_count) # 39.5
get_optimal_bandwidth <- function(df){
bw <- tryCatch({
IKbandwidth(df$relative_week, df$lengthened_commit_count, cutpoint = 0, verbose = FALSE, kernel = "triangular")
}, error = function(e) {
NA
})
}
optimal_bandwidth <- get_optimal_bandwidth(intermediate_long_df)
window_num <- 4
final_long_df <- intermediate_long_df |>
filter(relative_week >= (- window_num) & relative_week <= (window_num))
library(fitdistrplus)
descdist(final_long_df$lengthened_commit_count, discrete=FALSE)
#start_values <- list(shape1 = 1, shape2 = 1)
#fit <- MASS::fitdistr(as.numeric(long_df$lengthened_commit_count), "negative binomial")
print(fit)
#NOTE should not run if you've already dropped NA
mlm <- glmer.nb(lengthened_commit_count ~ before_after*relative_week +
(before_after*relative_week|commit_type) +
(before_after*relative_week|rd_event),
control=glmerControl(optimizer="bobyqa",
optCtrl=list(maxfun=2e5)), nAGQ=0,
data=final_long_df)
#mlm <- lmer(lengthened_commit_count ~ before_after*relative_week+
# (before_after*relative_week|commit_type) +
# (before_after*relative_week|rd_event) ,data=long_df)
summary(mlm)
qqnorm(residuals(mlm))
res <- ranef(mlm)
print(res)
#final_long_df <- final_long_df |>
# drop_na()
library(performance)
#descdist(long_df$commit_share, discrete=FALSE)
#fit <- MASS::fitdistr(as.numeric(long_df$commit_share), "normal")
#print(fit)
wikimedia_long_df <- final_long_df |>
filter(commit_type == "wikimedia_commit_count")
wikimedia_share_lmer <- lmer(commit_share ~ before_after*relative_week +
(1| rd_event),
data=wikimedia_long_df)
summary(wikimedia_share_lmer)
icc(wikimedia_share_lmer)
other_long_df <- final_long_df |>
filter(commit_type == "other_commit_count")
other_share_lmer <- lmer(commit_share ~ before_after*relative_week +
(1| rd_event),
data=other_long_df)
summary(other_share_lmer)
icc(other_share_lmer)
#power analysis
#library(simr)
#simrOptions(progress=FALSE)
## Intercept and slopes for intervention, time1, time2, intervention:time1, intervention:time2
#wmf_fixed <- c(0.511, -0.166, 0.002, 0.007)
## Random intercepts for participants clustered by class
#wmf_rand <- matrix(c(
# 0.01, 0.005, 0.002, 0.001,
# 0.005, 0.02, 0.003, 0.004,
# 0.002, 0.003, 0.015, 0.006,
# 0.001, 0.004, 0.006, 0.01
#), nrow=4, byrow=TRUE)
## residual variance
#wmf_res <- 0.2065
#wmf_model <- makeLmer(commit_share ~ before_after*relative_week + (before_after*relative_week | rd_event),
# fixef=wmf_fixed, VarCorr=wmf_rand, sigma=wmf_res, data=wikimedia_long_df)
#sim_treat <- powerSim(wmf_model, nsim=100, test = fcompare(commit_share~relative_week))
#sim_treat
#model_ext_subj <- extend(wmf_model, within="rd_event+before_after+relative_week", n=30)
#sim_treat_subj <- powerSim(model_ext_subj, nsim=100, test = fcompare(commit_share~before_after*relative_week))
#sim_treat_subj
#p_curve_treat <- powerCurve(model_ext_subj, test=fcompare(commit_share~before_after*relative_week),
# within="rd_event+before_after+relative_week",
# breaks=c(5,10,15,20))
#plot(p_curve_treat)