1
0
mw-lifecycle-analysis/analysis_data/121625_data_unification.R
2025-12-16 12:40:44 -08:00

166 lines
5.4 KiB
R

library(tidyverse)
library(stringr)
library(tidyr)
library(dplyr)
library(purrr)
# loading in the first unified set to contain updated affiliation data
main_csv <- "~/analysis_data/121625_constituent_dfs/100625_unified_w_affil.csv"
main_df <- read.csv(main_csv, header = TRUE)
length(unique(main_df$TaskPHID))
# dedupe Task with changed title and duplicate replies, no duplicate tasks
# duplicates a result of Phabricator merges
# should just be removing duplicates from the overlap betweeen c2 and c3
first_rows <- main_df |>
filter(id %in% c(20846, 20847)) |>
distinct(id, .keep_all = TRUE)
others <- main_df |>
filter(!(id %in% c(20846, 20847))) |>
filter(id != 23366)
main_df <- bind_rows(others, first_rows)
length(unique(main_df$id))
#filter out existing olmo and PC stuff
main_df <- main_df |>
select(-starts_with("olmo")) |>
select(-starts_with("PC"))
# change bzimport affiliation from FALSE to BzImport
main_df <- main_df |>
mutate(isAuthorWMF = as.character(isAuthorWMF)) |>
mutate(isAuthorWMF = if_else(
AuthorPHID == "PHID-USER-ynivjflmc2dcl6w5ut5v",
"BzImport",
isAuthorWMF
))
# getting old task closure stuff
desc_info <- main_df %>%
filter(comment_type == "task_description") %>%
group_by(TaskPHID) %>%
ungroup() %>%
transmute(
TaskPHID,
task_desc_author = AuthorPHID,
task_desc_dateClosed = as.POSIXct(date_closed, origin = "1970-01-01", tz = "UTC")
)
# getting old status stuff, which was only on 071425
#old_csv <- "~/analysis_data/121625_constituent_dfs/071425_master_discussion_data.csv"
#old_df <- read.csv(old_csv, header = TRUE)
#duplicates from (c2/c3 overlap) in 0714 version
#duplicate_rows <- old_task_status [duplicated(old_task_status$TaskPHID) |
# duplicated(old_task_status$TaskPHID, fromLast = TRUE), ]
# all duplicates in old_df (c2/c3 overlap) have the same resolution status
#conflicting_status <- old_task_status %>%
# group_by(TaskPHID) %>%
# filter(n() > 1, n_distinct(status) > 1) %>%
# ungroup()
# as such, squashing down to one row for each
#old_task_status <- old_df |>
# filter(comment_type == "task_description") |>
# select(TaskPHID, status) |>
# distinct(TaskPHID, status)
#new_desc_info <- desc_info |>
# left_join(
# old_task_status,
# by= "TaskPHID"
# )
#identifying comments in ADAC set
main_df <- main_df |>
mutate(created = as.POSIXct(date_created, origin = "1970-01-01", tz = "UTC")) |>
left_join(desc_info, by = "TaskPHID") |>
mutate(
ADAC = as.integer(
!is.na(task_desc_author) &
AuthorPHID == task_desc_author &
(is.na(task_desc_dateClosed) | created < task_desc_dateClosed)
),
before_close = as.integer(
(is.na(task_desc_dateClosed) | created < task_desc_dateClosed)
)
)
#getting PC values (need todo after revised pass)
pca_csv <- "~/analysis_data/121625_constituent_dfs/121525_total_pca_df.csv"
pca_df <- read.csv(pca_csv, header = TRUE)
length(unique(pca_df$id))
pca_df <- pca_df |>
select(starts_with("PC"),
id)
#first_join <- main_df|>
# left_join(
# pca_df,
# by = "id"
# )
olmo_csv <- "~/analysis_data/121625_constituent_dfs/all_120525_olmo_batched_categorized.csv"
olmo_df <- read.csv(olmo_csv, header = TRUE)
olmo_df <- olmo_df |>
mutate(olmo_cleaned_sentences = cleaned_sentences,
olmo_sentence_labels = sentence_categories)|>
select(id, olmo_cleaned_sentences, olmo_sentence_labels)
second_join <- main_df|>
left_join(
olmo_df,
by = "id"
)
#wrangling human labels
large_human_labels_csv <- "~/analysis_data/121625_constituent_dfs/102025_human_labels.csv"
large_human_labels_df <- read.csv(large_human_labels_csv, header = TRUE)
small_human_labels_csv <- "~/analysis_data/121625_constituent_dfs/102125_human_info_sample.csv"
small_human_labels_df <- read.csv(small_human_labels_csv, header = TRUE)
#TODO
# [ x ] collate the two samples into one
large_human_labels_df <- large_human_labels_df |> select(id, cleaned_sentences, human_label)
small_human_labels_df <- small_human_labels_df |> select(id, cleaned_sentences, human_label)
human_labels_df <- rbind(large_human_labels_df, small_human_labels_df)
# [ x ] aggregate sentence level rows into comment level
human_labels_reduced <- human_labels_df %>%
group_by(id) %>%
summarise(
cleaned_sentences = list(cleaned_sentences),
human_labels = list(str_squish(human_label)),
.groups = "drop"
)
# [ x ] merge into unified data set
third_join <- second_join |>
left_join(
human_labels_reduced,
by="id"
)
# [ x ] clean/drop needless fields
unified_df <- third_join |>
select(-same_author) |>
mutate(across(c(human_labels, cleaned_sentences),
~ {
x <- as.character(.x)
x_trim <- str_squish(x)
ifelse(x_trim == "NULL",
NA_character_,
x)
}))
# [ x ] verify set
length(unique(unified_df$TaskPHID))
length(unique(unified_df$id))
pulling <- unified_df |>
filter(id == "24695" | id == "24696")
pulling <- unified_df |>
filter(id == "23366" | id == "20846" | id == "20847")
# [ x ] get the focal repo for gerrit code changes
unified_df <- unified_df |>
mutate(
gerrit_repo = str_extract(selected_gerrit_results, "(?<='project': ')[^']+")
)
write.csv(unified_df, "forPCA_121625_unified.csv", row.names = FALSE)