1
0
mw-lifecycle-analysis/analysis_data/data_verification_3.R
2025-10-21 19:41:36 -07:00

50 lines
1.4 KiB
R

library(tidyverse)
library(stringr)
library(tidyr)
library(dplyr)
library(purrr)
main_csv <- "~/analysis_data/100625_unified_w_affil.csv"
main_df <- read.csv(main_csv, header = TRUE)
#filter out existing olmo stuff
main_df <- main_df |>
select(-starts_with("olmo"))
pca_csv <- "~/analysis_data/102125_constituent_dfs/102025_total_pca_df.csv"
pca_df <- read.csv(pca_csv, header = TRUE)
pca_df <- pca_df |>
select(starts_with("PC"),
id)
first_join <- main_df|>
left_join(
pca_df,
by = "id"
)
olmo_csv <- "~/analysis_data/102125_constituent_dfs/all_101325_olmo_batched_categorized.csv"
olmo_df <- read.csv(olmo_csv, header = TRUE)
olmo_df <- olmo_df |>
mutate(olmo_cleaned_sentences = cleaned_sentences,
olmo_sentence_labels = sentence_categories)|>
select(id, olmo_cleaned_sentences, olmo_sentence_labels)
second_join <- first_join|>
left_join(
olmo_df,
by = "id"
)
#wrangling human labels
large_human_labels_csv <- "~/analysis_data/102125_constituent_dfs/102025_human_labels.csv"
large_human_labels_df <- read.csv(large_human_labels_csv, header = TRUE)
small_human_labels_csv <- "~/analysis_data/102125_constituent_dfs/102125_human_info_sample.csv"
small_human_labels_df <- read.csv(small_human_labels_csv, header = TRUE)
#TODO
# [ ] collate the two samples into one
# [ ] aggregate sentence level rows into comment level
# [ ] merge into unified data set