junior-sheer/codebase/scratch/federated_scratch.py
Carl Colglazier 60023b07d1 Refactor scripts and code.
Split manuscripts into their own directories / projects.
2025-05-26 20:08:57 -05:00

75 lines
3.4 KiB
Python

jm = pl.read_json("data/joinmastodon-2023-08-25.json")
jm_servers = set(jm["domain"].unique().to_list())
jm_td = td = TagData(jm_servers, 256, min_server_accounts=2)
jm_tfidf = td.bm(n_server_accounts=0, n_servers=2, n_accounts=10)#.filter(pl.col("accounts") / pl.col("D") > 0.0001)
mat = built_tfidf_matrix(jm_tfidf, jm_td.tag_to_index, jm_td.host_to_index)
m = (mat.T / scipy.sparse.linalg.norm(mat.T, ord=2, axis=0)) # good one
server_similarlity = cosine_similarity(m.tocsr())
# Export server similarity
tag_sm = cosine_similarity(mat.tocsr())
tag_index_included = (np.sum(tag_sm, axis=0) > 0)
included_tag_strings = np.array(list(jm_td.tag_to_index.keys()))[tag_index_included]
tag_sm_matrix = tag_sm[np.ix_(tag_index_included, tag_index_included)]
# import Affinity Prop
from sklearn.cluster import AffinityPropagation
ap = AffinityPropagation(affinity="precomputed", random_state=0).fit(tag_sm_matrix)
clusters = pl.DataFrame({"tag": included_tag_strings, "cluster": ap.labels_})
# select a random element from each cluster
clusters.group_by("cluster").agg([pl.col("tag").shuffle().first().alias("tag")]).sort("cluster")["tag"].to_list()
example_topics = ["tech", "linux", "hacking", "gamedev"]
example_indices = [s in example_topics for s in included_tag_strings]
similar_servers = cosine_similarity(np.array(example_indices).reshape(-1,1).T, mat[np.ix_(tag_index_included)].T)
np.array(list(jm_td.host_to_index.keys()))[np.argsort(-similar_servers[0])][0:10]
#np.array(list(jm_td.host_to_index.keys()))[np.argsort(-similarlity[jm_td.host_to_index["historians.social"]])][0:10]
#np.array(list(jm_td.host_to_index.keys()))[np.where(np.sum(mat, axis=0) < 0.01)[1]]
server_samples = set(pl.scan_ipc("data/scratch/all_tag_posts.feather").select("host").unique().collect().sample(fraction = 1.0)["host"].to_list())
td = TagData(server_samples, 256, min_server_accounts=2)
tfidf = td.bm(n_server_accounts=0, n_servers=2, n_accounts=10)#.filter(pl.col("accounts") / pl.col("D") > 0.0001)
baseline_host_to_index = td.host_to_index
full_mat = built_tfidf_matrix(tfidf, td.tag_to_index, td.host_to_index).T
#m = (full_mat.T / scipy.sparse.linalg.norm(full_mat.T, ord=2, axis=0)).T
m = (full_mat / scipy.sparse.linalg.norm(full_mat, ord=2, axis=0)) # good one
baseline_similarlity = cosine_similarity(m)
l = []
for i in range(np.shape(baseline_similarlity)[0] - 1):
#s_index = min(i, np.shape(baseline_similarlity)[0] - 1)
l.append(
pl.DataFrame({
"Source": list(td.host_to_index.keys())[i],
"Target": list(td.host_to_index.keys())[i+1:],
"Similarity": baseline_similarlity[i][i+1:]
})
)
similarity_df = pl.concat(l).filter(pl.col("Similarity") > 0.0)
similarity_df.write_ipc("data/scratch/server_similarity.feather")
server = "hci.social"
similarity_df.filter((pl.col("Source") == server) | (pl.col("Target") == server)).sort("Similarity", descending=True)[0:10]
tfidf.filter(pl.col("host") == server)[0:10]
tfidf.filter(pl.col("tags") == "aoir2023")
m = (full_mat.T / scipy.sparse.linalg.norm(full_mat.T, ord=2, axis=0)) # good one
tag_similarity = cosine_similarity(m)
l = []
for i in range(np.shape(tag_similarity)[0] - 1):
#s_index = min(i, np.shape(baseline_similarlity)[0] - 1)
l.append(
pl.DataFrame({
"Source": list(td.tag_to_index.keys())[i],
"Target": list(td.tag_to_index.keys())[i+1:],
"Similarity": tag_similarity[i][i+1:]
})
)
tag_similarity_df = pl.concat(l).filter(pl.col("Similarity") > 0.0)