junior-sheer/scripts/similar_servers.py
Carl Colglazier 60023b07d1 Refactor scripts and code.
Split manuscripts into their own directories / projects.
2025-05-26 20:08:57 -05:00

28 lines
1.2 KiB
Python

# Generates a list of similar servers
import polars as pl
import scipy
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from FediRecommender import TagData, built_tfidf_matrix
server_samples = set(pl.scan_ipc("data/scratch/all_tag_posts.feather").select("host").unique().collect().sample(fraction = 1.0)["host"].to_list())
# Create data object
td = TagData(servers=server_samples, n_tags=256, min_server_accounts=2, data_dir='data')
# Normalize data using BM
tfidf = td.bm(n_server_accounts=0, n_servers=2, n_accounts=10)#.filter(pl.col("accounts") / pl.col("D") > 0.0001)
baseline_host_to_index = td.host_to_index
full_mat = built_tfidf_matrix(tfidf, td.tag_to_index, td.host_to_index).T
m = (full_mat / scipy.sparse.linalg.norm(full_mat, ord=2, axis=0)) # good one
baseline_similarlity = cosine_similarity(m)
l = []
for i in range(np.shape(baseline_similarlity)[0] - 1):
l.append(
pl.DataFrame({
"Source": list(td.host_to_index.keys())[i],
"Target": list(td.host_to_index.keys())[i+1:],
"Similarity": baseline_similarlity[i][i+1:]
})
)
similarity_df = pl.concat(l).filter(pl.col("Similarity") > 0.0)
similarity_df.write_ipc("data/scratch/server_similarity.feather")