13
0
cdsc_reddit/datasets/comments_2_parquet_part1.py

116 lines
3.7 KiB
Python
Raw Permalink Normal View History

#!/usr/bin/env python3
import json
from datetime import datetime
from multiprocessing import Pool
from itertools import islice
from helper import find_dumps, open_fileset
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
def parse_comment(comment, names= None):
if names is None:
names = ["id","subreddit","link_id","parent_id","created_utc","author","ups","downs","score","edited","subreddit_type","subreddit_id","stickied","is_submitter","body","error"]
try:
comment = json.loads(comment)
except json.decoder.JSONDecodeError as e:
print(e)
print(comment)
row = [None for _ in names]
row[-1] = "json.decoder.JSONDecodeError|{0}|{1}".format(e,comment)
return tuple(row)
row = []
for name in names:
if name == 'created_utc':
row.append(datetime.fromtimestamp(int(comment['created_utc']),tz=None))
elif name == 'edited':
val = comment[name]
if type(val) == bool:
row.append(val)
row.append(None)
else:
row.append(True)
row.append(datetime.fromtimestamp(int(val),tz=None))
elif name == "time_edited":
continue
elif name not in comment:
row.append(None)
else:
row.append(comment[name])
return tuple(row)
# conf = sc._conf.setAll([('spark.executor.memory', '20g'), ('spark.app.name', 'extract_reddit_timeline'), ('spark.executor.cores', '26'), ('spark.cores.max', '26'), ('spark.driver.memory','84g'),('spark.driver.maxResultSize','0'),('spark.local.dir','/gscratch/comdata/spark_tmp')])
dumpdir = "/gscratch/comdata/raw_data/reddit_dumps/comments/"
files = list(find_dumps(dumpdir, base_pattern="RC_20*"))
pool = Pool(28)
stream = open_fileset(files)
N = int(1e4)
rows = pool.imap_unordered(parse_comment, stream, chunksize=int(N/28))
schema = pa.schema([
pa.field('id', pa.string(), nullable=True),
pa.field('subreddit', pa.string(), nullable=True),
pa.field('link_id', pa.string(), nullable=True),
pa.field('parent_id', pa.string(), nullable=True),
pa.field('created_utc', pa.timestamp('ms'), nullable=True),
pa.field('author', pa.string(), nullable=True),
pa.field('ups', pa.int64(), nullable=True),
pa.field('downs', pa.int64(), nullable=True),
pa.field('score', pa.int64(), nullable=True),
pa.field('edited', pa.bool_(), nullable=True),
pa.field('time_edited', pa.timestamp('ms'), nullable=True),
pa.field('subreddit_type', pa.string(), nullable=True),
pa.field('subreddit_id', pa.string(), nullable=True),
pa.field('stickied', pa.bool_(), nullable=True),
pa.field('is_submitter', pa.bool_(), nullable=True),
pa.field('body', pa.string(), nullable=True),
pa.field('error', pa.string(), nullable=True),
])
from pathlib import Path
p = Path("/gscratch/comdata/output/reddit_comments.parquet_temp2")
if not p.is_dir():
if p.exists():
p.unlink()
p.mkdir()
else:
list(map(Path.unlink,p.glob('*')))
part_size = int(1e7)
part = 1
n_output = 0
writer = pq.ParquetWriter(f"/gscratch/comdata/output/reddit_comments.parquet_temp2/part_{part}.parquet",schema=schema,compression='snappy',flavor='spark')
while True:
if n_output > part_size:
if part > 1:
writer.close()
part = part + 1
n_output = 0
writer = pq.ParquetWriter(f"/gscratch/comdata/output/reddit_comments.parquet_temp2/part_{part}.parquet",schema=schema,compression='snappy',flavor='spark')
n_output += N
chunk = islice(rows,N)
pddf = pd.DataFrame(chunk, columns=schema.names)
table = pa.Table.from_pandas(pddf,schema=schema)
if table.shape[0] == 0:
break
writer.write_table(table)