13
0
cdsc_reddit/old/author_cosine_similarity.py

107 lines
3.9 KiB
Python
Raw Permalink Normal View History

2020-12-09 01:32:20 +00:00
from pyspark.sql import functions as f
from pyspark.sql import SparkSession
from pyspark.sql import Window
import numpy as np
import pyarrow
import pandas as pd
import fire
from itertools import islice
from pathlib import Path
from similarities_helper import *
#tfidf = spark.read.parquet('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/subreddit_terms.parquet')
def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, included_subreddits = None, topN = 500):
spark = SparkSession.builder.getOrCreate()
conf = spark.sparkContext.getConf()
print(outfile)
tfidf = spark.read.parquet(tfidf_path)
if included_subreddits is None:
included_subreddits = select_topN_subreddits(topN)
else:
included_subreddits = set(open(included_subreddits))
print("creating temporary parquet with matrix indicies")
tempdir = prep_tfidf_entries_weekly(tfidf, term_colname, min_df, included_subreddits)
tfidf = spark.read.parquet(tempdir.name)
# the ids can change each week.
subreddit_names = tfidf.select(['subreddit','subreddit_id_new','week']).distinct().toPandas()
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
spark.stop()
weeks = list(subreddit_names.week.drop_duplicates())
for week in weeks:
print("loading matrix")
mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week)
print('computing similarities')
sims = column_similarities(mat)
del mat
names = subreddit_names.loc[subreddit_names.week==week]
sims = sims.rename({i:sr for i, sr in enumerate(names.subreddit.values)},axis=1)
sims['subreddit'] = names.subreddit.values
write_weekly_similarities(outfile, sims, week)
def cosine_similarities(outfile, min_df = None, included_subreddits=None, topN=500):
'''
Compute similarities between subreddits based on tfi-idf vectors of author comments
included_subreddits : string
Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits
min_df : int (default = 0.1 * (number of included_subreddits)
exclude terms that appear in fewer than this number of documents.
outfile: string
where to output csv and feather outputs
'''
spark = SparkSession.builder.getOrCreate()
conf = spark.sparkContext.getConf()
print(outfile)
tfidf = spark.read.parquet('/gscratch/comdata/output/reddit_similarity/tfidf/subreddit_comment_authors.parquet')
if included_subreddits is None:
included_subreddits = select_topN_subreddits(topN)
else:
included_subreddits = set(open(included_subreddits))
print("creating temporary parquet with matrix indicies")
tempdir = prep_tfidf_entries(tfidf, 'author', min_df, included_subreddits)
tfidf = spark.read.parquet(tempdir.name)
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
spark.stop()
print("loading matrix")
mat = read_tfidf_matrix(tempdir.name,'author')
print('computing similarities')
sims = column_similarities(mat)
del mat
sims = pd.DataFrame(sims.todense())
sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)},axis=1)
sims['subreddit'] = subreddit_names.subreddit.values
p = Path(outfile)
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
sims.to_feather(outfile)
tempdir.cleanup()
if __name__ == '__main__':
fire.Fire(author_cosine_similarities)