2020-11-12 00:05:36 +00:00
|
|
|
import pyarrow
|
|
|
|
import altair as alt
|
|
|
|
alt.data_transformers.disable_max_rows()
|
2020-11-18 00:33:13 +00:00
|
|
|
alt.data_transformers.enable('default')
|
|
|
|
from sklearn.neighbors import NearestNeighbors
|
2020-11-12 00:05:36 +00:00
|
|
|
import pandas as pd
|
|
|
|
from numpy import random
|
2020-11-18 00:46:49 +00:00
|
|
|
import fire
|
2020-11-12 00:05:36 +00:00
|
|
|
import numpy as np
|
|
|
|
|
2020-11-18 00:33:13 +00:00
|
|
|
def base_plot(plot_data):
|
2021-01-28 04:08:07 +00:00
|
|
|
|
|
|
|
# base = base.encode(alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')))
|
|
|
|
|
|
|
|
cluster_dropdown = alt.binding_select(options=[str(c) for c in sorted(set(plot_data.cluster))])
|
|
|
|
|
2021-02-23 00:03:48 +00:00
|
|
|
# subreddit_dropdown = alt.binding_select(options=sorted(plot_data.subreddit))
|
2021-01-28 04:08:07 +00:00
|
|
|
|
2021-01-28 04:26:15 +00:00
|
|
|
cluster_click_select = alt.selection_single(on='click',fields=['cluster'], bind=cluster_dropdown, name=' ')
|
2021-01-28 04:08:07 +00:00
|
|
|
# cluster_select = alt.selection_single(fields=['cluster'], bind=cluster_dropdown, name='cluster')
|
|
|
|
# cluster_select_and = cluster_click_select & cluster_select
|
|
|
|
#
|
|
|
|
# subreddit_select = alt.selection_single(on='click',fields=['subreddit'],bind=subreddit_dropdown,name='subreddit_click')
|
|
|
|
|
|
|
|
color = alt.condition(cluster_click_select ,
|
|
|
|
alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')),
|
|
|
|
alt.value("lightgray"))
|
|
|
|
|
|
|
|
|
2020-11-18 00:33:13 +00:00
|
|
|
base = alt.Chart(plot_data).mark_text().encode(
|
|
|
|
alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
|
|
|
|
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=(-65,65))),
|
2021-01-28 04:08:07 +00:00
|
|
|
color=color,
|
2020-11-18 00:33:13 +00:00
|
|
|
text='subreddit')
|
2020-11-12 00:05:36 +00:00
|
|
|
|
2021-01-28 04:08:07 +00:00
|
|
|
base = base.add_selection(cluster_click_select)
|
|
|
|
|
|
|
|
|
2020-11-18 00:33:13 +00:00
|
|
|
return base
|
2020-11-12 00:05:36 +00:00
|
|
|
|
2020-11-18 00:33:13 +00:00
|
|
|
def zoom_plot(plot_data):
|
|
|
|
chart = base_plot(plot_data)
|
2021-01-28 04:08:07 +00:00
|
|
|
|
2020-11-18 00:33:13 +00:00
|
|
|
chart = chart.interactive()
|
2021-02-23 00:03:48 +00:00
|
|
|
chart = chart.properties(width=1275,height=800)
|
2020-11-12 00:05:36 +00:00
|
|
|
|
2020-11-18 00:33:13 +00:00
|
|
|
return chart
|
2020-11-12 00:05:36 +00:00
|
|
|
|
2020-11-18 00:33:13 +00:00
|
|
|
def viewport_plot(plot_data):
|
|
|
|
selector1 = alt.selection_interval(encodings=['x','y'],init={'x':(-65,65),'y':(-65,65)})
|
|
|
|
selectorx2 = alt.selection_interval(encodings=['x'],init={'x':(30,40)})
|
|
|
|
selectory2 = alt.selection_interval(encodings=['y'],init={'y':(-20,0)})
|
2020-11-12 00:05:36 +00:00
|
|
|
|
2020-11-18 00:33:13 +00:00
|
|
|
base = base_plot(plot_data)
|
2020-11-12 00:05:36 +00:00
|
|
|
|
2020-11-18 00:33:13 +00:00
|
|
|
viewport = base.mark_point(fillOpacity=0.2,opacity=0.2).encode(
|
|
|
|
alt.X('x',axis=alt.Axis(grid=False)),
|
|
|
|
alt.Y('y',axis=alt.Axis(grid=False)),
|
|
|
|
)
|
2021-01-28 04:08:07 +00:00
|
|
|
|
2020-11-18 00:33:13 +00:00
|
|
|
viewport = viewport.properties(width=600,height=400)
|
|
|
|
|
|
|
|
viewport1 = viewport.add_selection(selector1)
|
|
|
|
|
|
|
|
viewport2 = viewport.encode(
|
|
|
|
alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1)),
|
|
|
|
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selector1))
|
|
|
|
)
|
|
|
|
|
|
|
|
viewport2 = viewport2.add_selection(selectorx2)
|
|
|
|
viewport2 = viewport2.add_selection(selectory2)
|
|
|
|
|
|
|
|
sr = base.encode(alt.X('x',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectorx2)),
|
|
|
|
alt.Y('y',axis=alt.Axis(grid=False),scale=alt.Scale(domain=selectory2))
|
|
|
|
)
|
|
|
|
|
2021-01-28 04:08:07 +00:00
|
|
|
|
2020-11-18 00:33:13 +00:00
|
|
|
sr = sr.properties(width=1275,height=600)
|
|
|
|
|
|
|
|
|
|
|
|
chart = (viewport1 | viewport2) & sr
|
|
|
|
|
|
|
|
|
|
|
|
return chart
|
|
|
|
|
|
|
|
def assign_cluster_colors(tsne_data, clusters, n_colors, n_neighbors = 4):
|
|
|
|
tsne_data = tsne_data.merge(clusters,on='subreddit')
|
|
|
|
|
|
|
|
centroids = tsne_data.groupby('cluster').agg({'x':np.mean,'y':np.mean})
|
|
|
|
|
|
|
|
color_ids = np.arange(n_colors)
|
|
|
|
|
|
|
|
distances = np.empty(shape=(centroids.shape[0],centroids.shape[0]))
|
|
|
|
|
|
|
|
groups = tsne_data.groupby('cluster')
|
2021-01-28 04:08:07 +00:00
|
|
|
|
|
|
|
points = np.array(tsne_data.loc[:,['x','y']])
|
|
|
|
centers = np.array(centroids.loc[:,['x','y']])
|
|
|
|
|
|
|
|
# point x centroid
|
|
|
|
point_center_distances = np.linalg.norm((points[:,None,:] - centers[None,:,:]),axis=-1)
|
|
|
|
|
|
|
|
# distances is cluster x point
|
|
|
|
for gid, group in groups:
|
|
|
|
c_dists = point_center_distances[group.index.values,:].min(axis=0)
|
|
|
|
distances[group.cluster.values[0],] = c_dists
|
2020-11-18 00:33:13 +00:00
|
|
|
|
|
|
|
# nbrs = NearestNeighbors(n_neighbors=n_neighbors).fit(centroids)
|
|
|
|
# distances, indices = nbrs.kneighbors()
|
|
|
|
|
2021-01-28 04:08:07 +00:00
|
|
|
nearest = distances.argpartition(n_neighbors,0)
|
|
|
|
indices = nearest[:n_neighbors,:].T
|
|
|
|
# neighbor_distances = np.copy(distances)
|
|
|
|
# neighbor_distances.sort(0)
|
|
|
|
# neighbor_distances = neighbor_distances[0:n_neighbors,:]
|
|
|
|
|
|
|
|
# nbrs = NearestNeighbors(n_neighbors=n_neighbors,metric='precomputed').fit(distances)
|
|
|
|
# distances, indices = nbrs.kneighbors()
|
2020-11-18 00:33:13 +00:00
|
|
|
|
|
|
|
color_assignments = np.repeat(-1,len(centroids))
|
|
|
|
|
|
|
|
for i in range(len(centroids)):
|
|
|
|
knn = indices[i]
|
|
|
|
knn_colors = color_assignments[knn]
|
|
|
|
available_colors = color_ids[list(set(color_ids) - set(knn_colors))]
|
|
|
|
|
|
|
|
if(len(available_colors) > 0):
|
|
|
|
color_assignments[i] = available_colors[0]
|
|
|
|
else:
|
|
|
|
raise Exception("Can't color this many neighbors with this many colors")
|
|
|
|
|
|
|
|
|
|
|
|
centroids = centroids.reset_index()
|
|
|
|
colors = centroids.loc[:,['cluster']]
|
|
|
|
colors['color'] = color_assignments
|
|
|
|
|
|
|
|
tsne_data = tsne_data.merge(colors,on='cluster')
|
|
|
|
return(tsne_data)
|
|
|
|
|
2020-11-18 00:46:49 +00:00
|
|
|
def build_visualization(tsne_data, clusters, output):
|
2020-11-18 00:33:13 +00:00
|
|
|
|
2021-02-23 00:03:48 +00:00
|
|
|
# tsne_data = "/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather"
|
|
|
|
# clusters = "/gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather"
|
|
|
|
|
2020-11-18 00:46:49 +00:00
|
|
|
tsne_data = pd.read_feather(tsne_data)
|
|
|
|
clusters = pd.read_feather(clusters)
|
2020-11-18 00:33:13 +00:00
|
|
|
|
2020-11-18 00:46:49 +00:00
|
|
|
tsne_data = assign_cluster_colors(tsne_data,clusters,10,8)
|
2020-11-18 00:33:13 +00:00
|
|
|
|
2021-02-23 00:03:48 +00:00
|
|
|
# sr_per_cluster = tsne_data.groupby('cluster').subreddit.count().reset_index()
|
|
|
|
# sr_per_cluster = sr_per_cluster.rename(columns={'subreddit':'cluster_size'})
|
|
|
|
|
|
|
|
tsne_data = tsne_data.merge(sr_per_cluster,on='cluster')
|
|
|
|
|
2020-11-18 00:46:49 +00:00
|
|
|
term_zoom_plot = zoom_plot(tsne_data)
|
2020-11-18 00:33:13 +00:00
|
|
|
|
2020-11-18 00:46:49 +00:00
|
|
|
term_zoom_plot.save(output)
|
2020-11-18 00:33:13 +00:00
|
|
|
|
2020-11-18 00:46:49 +00:00
|
|
|
term_viewport_plot = viewport_plot(tsne_data)
|
2020-11-18 00:33:13 +00:00
|
|
|
|
2020-11-18 00:46:49 +00:00
|
|
|
term_viewport_plot.save(output.replace(".html","_viewport.html"))
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
fire.Fire(build_visualization)
|
|
|
|
|
2021-01-28 04:22:24 +00:00
|
|
|
# commenter_data = pd.read_feather("tsne_author_fit.feather")
|
|
|
|
# clusters = pd.read_feather('author_3000_clusters.feather')
|
|
|
|
# commenter_data = assign_cluster_colors(commenter_data,clusters,10,8)
|
|
|
|
# commenter_zoom_plot = zoom_plot(commenter_data)
|
|
|
|
# commenter_viewport_plot = viewport_plot(commenter_data)
|
|
|
|
# commenter_zoom_plot.save("subreddit_commenters_tsne_3000.html")
|
|
|
|
# commenter_viewport_plot.save("subreddit_commenters_tsne_3000_viewport.html")
|
2020-11-18 00:33:13 +00:00
|
|
|
|
|
|
|
# chart = chart.properties(width=10000,height=10000)
|
|
|
|
# chart.save("test_tsne_whole.svg")
|