88 lines
3.4 KiB
Python
88 lines
3.4 KiB
Python
|
from sklearn.metrics import silhouette_score
|
||
|
from sklearn.cluster import AffinityPropagation
|
||
|
from functools import partial
|
||
|
from clustering import _affinity_clustering, read_similarity_mat
|
||
|
from dataclasses import dataclass
|
||
|
from multiprocessing import Pool, cpu_count, Array, Process
|
||
|
from pathlib import Path
|
||
|
from itertools import product, starmap
|
||
|
import pandas as pd
|
||
|
import fire
|
||
|
import sys
|
||
|
|
||
|
# silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying.
|
||
|
|
||
|
@dataclass
|
||
|
class clustering_result:
|
||
|
outpath:Path
|
||
|
damping:float
|
||
|
max_iter:int
|
||
|
convergence_iter:int
|
||
|
preference_quantile:float
|
||
|
silhouette_score:float
|
||
|
alt_silhouette_score:float
|
||
|
name:str
|
||
|
|
||
|
def do_clustering(damping, convergence_iter, preference_quantile, name, mat, subreddits, max_iter, outdir:Path, random_state, verbose, alt_mat):
|
||
|
if name is None:
|
||
|
name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{convergence_iter}"
|
||
|
print(name)
|
||
|
sys.stdout.flush()
|
||
|
outpath = outdir / (str(name) + ".feather")
|
||
|
print(outpath)
|
||
|
clustering = _affinity_clustering(mat, subreddits, outpath, damping, max_iter, convergence_iter, preference_quantile, random_state, verbose)
|
||
|
score = silhouette_score(clustering.affinity_matrix_, clustering.labels_, metric='precomputed')
|
||
|
alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed')
|
||
|
|
||
|
res = clustering_result(outpath=outpath,
|
||
|
damping=damping,
|
||
|
max_iter=max_iter,
|
||
|
convergence_iter=convergence_iter,
|
||
|
preference_quantile=preference_quantile,
|
||
|
silhouette_score=score,
|
||
|
alt_silhouette_score=score,
|
||
|
name=str(name))
|
||
|
|
||
|
return res
|
||
|
|
||
|
# alt similiarities is for checking the silhouette coefficient of an alternative measure of similarity (e.g., topic similarities for user clustering).
|
||
|
|
||
|
def select_affinity_clustering(similarities, outdir, damping=[0.9], max_iter=100000, convergence_iter=[30], preference_quantile=[0.5], random_state=1968, verbose=True, alt_similarities=None, J=None):
|
||
|
|
||
|
damping = list(map(float,damping))
|
||
|
convergence_iter = convergence_iter = list(map(int,convergence_iter))
|
||
|
preference_quantile = list(map(float,preference_quantile))
|
||
|
|
||
|
if type(outdir) is str:
|
||
|
outdir = Path(outdir)
|
||
|
|
||
|
outdir.mkdir(parents=True,exist_ok=True)
|
||
|
|
||
|
subreddits, mat = read_similarity_mat(similarities,use_threads=True)
|
||
|
|
||
|
if alt_similarities is not None:
|
||
|
alt_mat = read_similarity_mat(alt_similarities,use_threads=True)
|
||
|
else:
|
||
|
alt_mat = None
|
||
|
|
||
|
if J is None:
|
||
|
J = cpu_count()
|
||
|
pool = Pool(J)
|
||
|
|
||
|
# get list of tuples: the combinations of hyperparameters
|
||
|
hyper_grid = product(damping, convergence_iter, preference_quantile)
|
||
|
hyper_grid = (t + (str(i),) for i, t in enumerate(hyper_grid))
|
||
|
|
||
|
_do_clustering = partial(do_clustering, mat=mat, subreddits=subreddits, outdir=outdir, max_iter=max_iter, random_state=random_state, verbose=verbose, alt_mat=alt_mat)
|
||
|
|
||
|
# similarities = Array('d', mat)
|
||
|
# call pool.starmap
|
||
|
print("running clustering selection")
|
||
|
clustering_data = pool.starmap(_do_clustering, hyper_grid)
|
||
|
clustering_data = pd.DataFrame(list(clustering_data))
|
||
|
return clustering_data
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
fire.Fire(select_affinity_clustering)
|