13
0
cdsc_reddit/clustering/kmeans_clustering_lsi.py

94 lines
3.4 KiB
Python
Raw Normal View History

2021-05-10 20:46:49 +00:00
import fire
from dataclasses import dataclass
from kmeans_clustering import kmeans_job, kmeans_clustering_result, kmeans_grid_sweep
from lsi_base import lsi_mixin, lsi_result_mixin, lsi_grid_sweep
from grid_sweep import grid_sweep
@dataclass
class kmeans_clustering_result_lsi(kmeans_clustering_result, lsi_result_mixin):
pass
class kmeans_lsi_job(kmeans_job, lsi_mixin):
def __init__(self, infile, outpath, name, lsi_dims, *args, **kwargs):
super().__init__(infile,
outpath,
name,
*args,
**kwargs)
super().set_lsi_dims(lsi_dims)
def get_info(self):
result = super().get_info()
self.result = kmeans_clustering_result_lsi(**result.__dict__,
lsi_dimensions=self.lsi_dims)
return self.result
class _kmeans_lsi_grid_sweep(grid_sweep):
def __init__(self,
inpath,
outpath,
lsi_dim,
*args,
**kwargs):
print(args)
print(kwargs)
self.lsi_dim = lsi_dim
self.jobtype = kmeans_lsi_job
super().__init__(self.jobtype, inpath, outpath, self.namer, self.lsi_dim, *args, **kwargs)
def namer(self, *args, **kwargs):
s = kmeans_grid_sweep.namer(self, *args[1:], **kwargs)
s += f"_lsi-{self.lsi_dim}"
return s
class kmeans_lsi_grid_sweep(lsi_grid_sweep):
def __init__(self,
inpath,
lsi_dims,
outpath,
n_clusters,
n_inits,
max_iters
):
super().__init__(kmeans_lsi_job,
_kmeans_lsi_grid_sweep,
inpath,
lsi_dims,
outpath,
n_clusters,
n_inits,
max_iters)
def run_kmeans_lsi_grid_sweep(savefile, inpath, outpath, n_clusters=[500], n_inits=[1], max_iters=[3000], lsi_dimensions="all"):
"""Run kmeans clustering once or more with different parameters.
Usage:
kmeans_clustering_lsi.py --savefile=SAVEFILE --inpath=INPATH --outpath=OUTPATH d--lsi_dimensions=<"all"|csv number of LSI dimensions to use> --n_clusters=<csv number of clusters> --n_inits=<csv> --max_iters=<csv>
Keword arguments:
savefile: path to save the metadata and diagnostics
inpath: path to folder containing feather files with LSI similarity labeled matrices of subreddit similarities.
outpath: path to output fit kmeans clusterings.
lsi_dimensions: either "all" or one or more available lsi similarity dimensions at INPATH.
n_clusters: one or more numbers of kmeans clusters to select.
n_inits: one or more numbers of different initializations to use for each clustering.
max_iters: one or more numbers of different maximum interations.
"""
obj = kmeans_lsi_grid_sweep(inpath,
lsi_dimensions,
outpath,
list(map(int,n_clusters)),
list(map(int,n_inits)),
list(map(int,max_iters))
)
obj.run(1)
obj.save(savefile)
if __name__ == "__main__":
fire.Fire(run_kmeans_lsi_grid_sweep)