2020-11-18 00:31:48 +00:00
|
|
|
import fire
|
2020-11-12 00:38:22 +00:00
|
|
|
import pyarrow
|
|
|
|
import pandas as pd
|
|
|
|
from numpy import random
|
|
|
|
import numpy as np
|
|
|
|
from sklearn.manifold import TSNE
|
|
|
|
|
2021-02-23 00:03:48 +00:00
|
|
|
similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet"
|
2020-11-12 00:38:22 +00:00
|
|
|
|
2020-11-18 00:31:48 +00:00
|
|
|
def fit_tsne(similarities, output, learning_rate=750, perplexity=50, n_iter=10000, early_exaggeration=20):
|
|
|
|
'''
|
|
|
|
similarities: feather file with a dataframe of similarity scores
|
|
|
|
learning_rate: parameter controlling how fast the model converges. Too low and you get outliers. Too high and you get a ball.
|
|
|
|
perplexity: number of neighbors to use. the default of 50 is often good.
|
2020-11-12 00:38:22 +00:00
|
|
|
|
2020-11-18 00:31:48 +00:00
|
|
|
'''
|
|
|
|
df = pd.read_feather(similarities)
|
2020-11-12 00:38:22 +00:00
|
|
|
|
2020-11-18 00:31:48 +00:00
|
|
|
n = df.shape[0]
|
2021-05-14 05:26:03 +00:00
|
|
|
mat = np.array(df.drop('_subreddit',1),dtype=np.float64)
|
2020-11-18 00:31:48 +00:00
|
|
|
mat[range(n),range(n)] = 1
|
|
|
|
mat[mat > 1] = 1
|
|
|
|
dist = 2*np.arccos(mat)/np.pi
|
|
|
|
tsne_model = TSNE(2,learning_rate=750,perplexity=50,n_iter=10000,metric='precomputed',early_exaggeration=20,n_jobs=-1)
|
|
|
|
tsne_fit_model = tsne_model.fit(dist)
|
2020-11-12 00:38:22 +00:00
|
|
|
|
2020-11-18 00:31:48 +00:00
|
|
|
tsne_fit_whole = tsne_fit_model.fit_transform(dist)
|
2020-11-12 00:38:22 +00:00
|
|
|
|
2021-05-14 05:26:03 +00:00
|
|
|
plot_data = pd.DataFrame({'x':tsne_fit_whole[:,0],'y':tsne_fit_whole[:,1], '_subreddit':df['_subreddit']})
|
2020-11-12 00:38:22 +00:00
|
|
|
|
2020-11-18 00:31:48 +00:00
|
|
|
plot_data.to_feather(output)
|
2020-11-12 00:38:22 +00:00
|
|
|
|
2020-11-18 00:31:48 +00:00
|
|
|
if __name__ == "__main__":
|
|
|
|
fire.Fire(fit_tsne)
|