13
0
cdsc_reddit/similarities/lsi_similarities.py

87 lines
4.2 KiB
Python
Raw Normal View History

import pandas as pd
import fire
from pathlib import Path
from similarities_helper import *
#from similarities_helper import similarities, lsi_column_similarities
from functools import partial
2022-01-19 21:57:02 +00:00
# inpath = "/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/tfidf/comment_authors_compex.parquet"
# term_colname='authors'
# outfile='/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/similarity/comment_test_compex_LSI'
2022-04-06 18:11:11 +00:00
# n_components=[10,50,100]
# included_subreddits="/gscratch/comdata/users/nathante/competitive_exclusion_reddit/data/included_subreddits.txt"
# n_iter=5
# random_state=1968
2022-01-19 21:57:02 +00:00
# algorithm='randomized'
2022-04-06 18:11:11 +00:00
# topN = None
# from_date=None
# to_date=None
# min_df=None
# max_df=None
def lsi_similarities(inpath, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None, tfidf_colname='tf_idf',n_components=100,n_iter=5,random_state=1968,algorithm='arpack',lsi_model=None):
print(n_components,flush=True)
if lsi_model is None:
if type(n_components) == list:
lsi_model = Path(outfile) / f'{max(n_components)}_{term_colname}_LSIMOD.pkl'
else:
lsi_model = Path(outfile) / f'{n_components}_{term_colname}_LSIMOD.pkl'
simfunc = partial(lsi_column_similarities,n_components=n_components,n_iter=n_iter,random_state=random_state,algorithm=algorithm,lsi_model_save=lsi_model)
return similarities(inpath=inpath, simfunc=simfunc, term_colname=term_colname, outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, from_date=from_date, to_date=to_date, tfidf_colname=tfidf_colname)
# change so that these take in an input as an optional argument (for speed, but also for idf).
def term_lsi_similarities(inpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_100k.parquet',outfile=None, min_df=None, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None, algorithm='arpack', n_components=300,n_iter=5,random_state=1968):
res = lsi_similarities(inpath,
'term',
outfile,
min_df,
max_df,
included_subreddits,
topN,
from_date,
to_date,
n_components=n_components,
algorithm = algorithm
)
return res
def author_lsi_similarities(inpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',outfile=None, min_df=2, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None,algorithm='arpack',n_components=300,n_iter=5,random_state=1968):
return lsi_similarities(inpath,
'author',
outfile,
min_df,
max_df,
included_subreddits,
topN,
from_date=from_date,
to_date=to_date,
n_components=n_components
)
2022-04-06 18:11:11 +00:00
def author_tf_similarities(inpath='/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet',outfile=None, min_df=2, max_df=None, included_subreddits=None, topN=None, from_date=None, to_date=None,algorithm='arpack',n_components=300,n_iter=5,random_state=1968):
return lsi_similarities(inpath,
'author',
outfile,
min_df,
max_df,
included_subreddits,
topN,
from_date=from_date,
to_date=to_date,
tfidf_colname='relative_tf',
n_components=n_components,
algorithm=algorithm
)
if __name__ == "__main__":
fire.Fire({'term':term_lsi_similarities,
'author':author_lsi_similarities,
'author-tf':author_tf_similarities})