107 lines
3.9 KiB
Python
107 lines
3.9 KiB
Python
|
from pyspark.sql import functions as f
|
||
|
from pyspark.sql import SparkSession
|
||
|
from pyspark.sql import Window
|
||
|
import numpy as np
|
||
|
import pyarrow
|
||
|
import pandas as pd
|
||
|
import fire
|
||
|
from itertools import islice
|
||
|
from pathlib import Path
|
||
|
from similarities_helper import *
|
||
|
|
||
|
#tfidf = spark.read.parquet('/gscratch/comdata/output/reddit_similarity/tfidf_weekly/subreddit_terms.parquet')
|
||
|
def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None, included_subreddits = None, topN = 500):
|
||
|
spark = SparkSession.builder.getOrCreate()
|
||
|
conf = spark.sparkContext.getConf()
|
||
|
print(outfile)
|
||
|
tfidf = spark.read.parquet(tfidf_path)
|
||
|
|
||
|
if included_subreddits is None:
|
||
|
included_subreddits = select_topN_subreddits(topN)
|
||
|
|
||
|
else:
|
||
|
included_subreddits = set(open(included_subreddits))
|
||
|
|
||
|
print("creating temporary parquet with matrix indicies")
|
||
|
tempdir = prep_tfidf_entries_weekly(tfidf, term_colname, min_df, included_subreddits)
|
||
|
|
||
|
tfidf = spark.read.parquet(tempdir.name)
|
||
|
|
||
|
# the ids can change each week.
|
||
|
subreddit_names = tfidf.select(['subreddit','subreddit_id_new','week']).distinct().toPandas()
|
||
|
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
|
||
|
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
|
||
|
spark.stop()
|
||
|
|
||
|
weeks = list(subreddit_names.week.drop_duplicates())
|
||
|
for week in weeks:
|
||
|
print("loading matrix")
|
||
|
mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week)
|
||
|
print('computing similarities')
|
||
|
sims = column_similarities(mat)
|
||
|
del mat
|
||
|
|
||
|
names = subreddit_names.loc[subreddit_names.week==week]
|
||
|
|
||
|
sims = sims.rename({i:sr for i, sr in enumerate(names.subreddit.values)},axis=1)
|
||
|
sims['subreddit'] = names.subreddit.values
|
||
|
write_weekly_similarities(outfile, sims, week)
|
||
|
|
||
|
|
||
|
|
||
|
def cosine_similarities(outfile, min_df = None, included_subreddits=None, topN=500):
|
||
|
'''
|
||
|
Compute similarities between subreddits based on tfi-idf vectors of author comments
|
||
|
|
||
|
included_subreddits : string
|
||
|
Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits
|
||
|
|
||
|
min_df : int (default = 0.1 * (number of included_subreddits)
|
||
|
exclude terms that appear in fewer than this number of documents.
|
||
|
|
||
|
outfile: string
|
||
|
where to output csv and feather outputs
|
||
|
'''
|
||
|
|
||
|
spark = SparkSession.builder.getOrCreate()
|
||
|
conf = spark.sparkContext.getConf()
|
||
|
print(outfile)
|
||
|
|
||
|
tfidf = spark.read.parquet('/gscratch/comdata/output/reddit_similarity/tfidf/subreddit_comment_authors.parquet')
|
||
|
|
||
|
if included_subreddits is None:
|
||
|
included_subreddits = select_topN_subreddits(topN)
|
||
|
|
||
|
else:
|
||
|
included_subreddits = set(open(included_subreddits))
|
||
|
|
||
|
print("creating temporary parquet with matrix indicies")
|
||
|
tempdir = prep_tfidf_entries(tfidf, 'author', min_df, included_subreddits)
|
||
|
tfidf = spark.read.parquet(tempdir.name)
|
||
|
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
|
||
|
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
|
||
|
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
|
||
|
spark.stop()
|
||
|
|
||
|
print("loading matrix")
|
||
|
mat = read_tfidf_matrix(tempdir.name,'author')
|
||
|
print('computing similarities')
|
||
|
sims = column_similarities(mat)
|
||
|
del mat
|
||
|
|
||
|
sims = pd.DataFrame(sims.todense())
|
||
|
sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)},axis=1)
|
||
|
sims['subreddit'] = subreddit_names.subreddit.values
|
||
|
|
||
|
p = Path(outfile)
|
||
|
|
||
|
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
|
||
|
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
||
|
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
||
|
|
||
|
sims.to_feather(outfile)
|
||
|
tempdir.cleanup()
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
fire.Fire(author_cosine_similarities)
|