13
0
cdsc_reddit/clustering/clustering_base.py

147 lines
5.4 KiB
Python
Raw Normal View History

import pickle
from pathlib import Path
import numpy as np
import pandas as pd
from dataclasses import dataclass
from sklearn.metrics import silhouette_score, silhouette_samples
2021-05-14 05:26:03 +00:00
from collections import Counter
# this is meant to be an interface, not created directly
class clustering_job:
def __init__(self, infile, outpath, name, call, *args, **kwargs):
self.outpath = Path(outpath)
self.call = call
self.args = args
self.kwargs = kwargs
self.infile = Path(infile)
self.name = name
self.hasrun = False
def run(self):
self.subreddits, self.mat = self.read_distance_mat(self.infile)
self.clustering = self.call(self.mat, *self.args, **self.kwargs)
self.cluster_data = self.process_clustering(self.clustering, self.subreddits)
self.score = self.silhouette()
self.outpath.mkdir(parents=True, exist_ok=True)
self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
self.hasrun = True
self.cleanup()
def cleanup(self):
self.cluster_data = None
self.mat = None
self.clustering=None
self.subreddits=None
def get_info(self):
if not self.hasrun:
self.run()
self.result = clustering_result(outpath=str(self.outpath.resolve()),
silhouette_score=self.score,
name=self.name,
n_clusters=self.n_clusters,
n_isolates=self.n_isolates,
2021-05-10 20:46:49 +00:00
silhouette_samples = self.silsampout
)
return self.result
def silhouette(self):
2021-05-14 05:26:03 +00:00
counts = Counter(self.clustering.labels_)
singletons = [key for key, value in counts.items() if value == 1]
isolates = (self.clustering.labels_ == -1) | (np.isin(self.clustering.labels_,np.array(singletons)))
scoremat = self.mat[~isolates][:,~isolates]
2021-05-14 05:26:03 +00:00
if self.n_clusters > 1:
2021-05-10 20:46:49 +00:00
score = silhouette_score(scoremat, self.clustering.labels_[~isolates], metric='precomputed')
silhouette_samp = silhouette_samples(self.mat, self.clustering.labels_, metric='precomputed')
silhouette_samp = pd.DataFrame({'subreddit':self.subreddits,'score':silhouette_samp})
self.outpath.mkdir(parents=True, exist_ok=True)
silsampout = self.outpath / ("silhouette_samples-" + self.name + ".feather")
self.silsampout = silsampout.resolve()
silhouette_samp.to_feather(self.silsampout)
else:
score = None
self.silsampout = None
return score
def read_distance_mat(self, similarities, use_threads=True):
print(similarities)
df = pd.read_feather(similarities, use_threads=use_threads)
mat = np.array(df.drop('_subreddit',1))
n = mat.shape[0]
mat[range(n),range(n)] = 1
return (df._subreddit,1-mat)
def process_clustering(self, clustering, subreddits):
if hasattr(clustering,'n_iter_'):
print(f"clustering took {clustering.n_iter_} iterations")
clusters = clustering.labels_
self.n_clusters = len(set(clusters))
print(f"found {self.n_clusters} clusters")
cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_})
cluster_sizes = cluster_data.groupby("cluster").count().reset_index()
print(f"the largest cluster has {cluster_sizes.loc[cluster_sizes.cluster!=-1].subreddit.max()} members")
print(f"the median cluster has {cluster_sizes.subreddit.median()} members")
n_isolates1 = (cluster_sizes.subreddit==1).sum()
print(f"{n_isolates1} clusters have 1 member")
2021-05-14 05:26:03 +00:00
n_isolates2 = cluster_sizes.loc[cluster_sizes.cluster==-1,:]['subreddit'].to_list()
if len(n_isolates2) > 0:
n_isloates2 = n_isolates2[0]
print(f"{n_isolates2} subreddits are in cluster -1",flush=True)
if n_isolates1 == 0:
self.n_isolates = n_isolates2
else:
self.n_isolates = n_isolates1
return cluster_data
class twoway_clustering_job(clustering_job):
def __init__(self, infile, outpath, name, call1, call2, args1, args2):
self.outpath = Path(outpath)
self.call1 = call1
self.args1 = args1
self.call2 = call2
self.args2 = args2
self.infile = Path(infile)
self.name = name
self.hasrun = False
self.args = args1|args2
def run(self):
self.subreddits, self.mat = self.read_distance_mat(self.infile)
self.step1 = self.call1(self.mat, **self.args1)
self.clustering = self.call2(self.mat, self.step1, **self.args2)
self.cluster_data = self.process_clustering(self.clustering, self.subreddits)
self.hasrun = True
self.after_run()
self.cleanup()
def after_run():
self.score = self.silhouette()
self.outpath.mkdir(parents=True, exist_ok=True)
print(self.outpath/(self.name+".feather"))
self.cluster_data.to_feather(self.outpath/(self.name + ".feather"))
def cleanup(self):
super().cleanup()
self.step1 = None
@dataclass
class clustering_result:
outpath:Path
silhouette_score:float
name:str
n_clusters:int
n_isolates:int
silhouette_samples:str