13
0
cdsc_reddit/clustering/clustering.py

48 lines
1.7 KiB
Python
Raw Normal View History

2020-11-17 23:59:20 +00:00
import pandas as pd
import numpy as np
from sklearn.cluster import AffinityPropagation
import fire
def affinity_clustering(similarities, output, damping=0.5, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968):
'''
similarities: feather file with a dataframe of similarity scores
preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits.
'''
df = pd.read_feather(similarities)
n = df.shape[0]
mat = np.array(df.drop('subreddit',1))
mat[range(n),range(n)] = 1
preference = np.quantile(mat,preference_quantile)
2020-12-09 01:32:20 +00:00
print("data loaded")
2020-11-17 23:59:20 +00:00
clustering = AffinityPropagation(damping=damping,
max_iter=max_iter,
convergence_iter=convergence_iter,
copy=False,
preference=preference,
affinity='precomputed',
random_state=random_state).fit(mat)
print(f"clustering took {clustering.n_iter_} iterations")
clusters = clustering.labels_
print(f"found {len(set(clusters))} clusters")
cluster_data = pd.DataFrame({'subreddit': df.subreddit,'cluster':clustering.labels_})
cluster_sizes = cluster_data.groupby("cluster").count()
print(f"the largest cluster has {cluster_sizes.subreddit.max()} members")
print(f"the median cluster has {cluster_sizes.subreddit.median()} members")
print(f"{(cluster_sizes.subreddit==1).sum()} clusters have 1 member")
cluster_data.to_feather(output)
if __name__ == "__main__":
fire.Fire(affinity_clustering)