74 lines
2.9 KiB
Python
74 lines
2.9 KiB
Python
|
from pyspark.sql import functions as f
|
||
|
from pyspark.sql import SparkSession
|
||
|
import pandas as pd
|
||
|
import fire
|
||
|
from pathlib import Path
|
||
|
from similarities_helper import prep_tfidf_entries, read_tfidf_matrix, select_topN_subreddits
|
||
|
|
||
|
|
||
|
def cosine_similarities(infile, term_colname, outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
|
||
|
spark = SparkSession.builder.getOrCreate()
|
||
|
conf = spark.sparkContext.getConf()
|
||
|
print(outfile)
|
||
|
print(exclude_phrases)
|
||
|
|
||
|
tfidf = spark.read.parquet(infile)
|
||
|
|
||
|
if included_subreddits is None:
|
||
|
included_subreddits = select_topN_subreddits(topN)
|
||
|
else:
|
||
|
included_subreddits = set(open(included_subreddits))
|
||
|
|
||
|
if exclude_phrases == True:
|
||
|
tfidf = tfidf.filter(~f.col(term_colname).contains("_"))
|
||
|
|
||
|
print("creating temporary parquet with matrix indicies")
|
||
|
tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, included_subreddits)
|
||
|
tfidf = spark.read.parquet(tempdir.name)
|
||
|
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
|
||
|
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
|
||
|
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
|
||
|
spark.stop()
|
||
|
|
||
|
print("loading matrix")
|
||
|
mat = read_tfidf_matrix(tempdir.name, term_colname)
|
||
|
print('computing similarities')
|
||
|
sims = column_similarities(mat)
|
||
|
del mat
|
||
|
|
||
|
sims = pd.DataFrame(sims.todense())
|
||
|
sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
|
||
|
sims['subreddit'] = subreddit_names.subreddit.values
|
||
|
|
||
|
p = Path(outfile)
|
||
|
|
||
|
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
|
||
|
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
||
|
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
||
|
|
||
|
sims.to_feather(outfile)
|
||
|
tempdir.cleanup()
|
||
|
|
||
|
def term_cosine_similarities(outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
|
||
|
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet',
|
||
|
'term',
|
||
|
outfile,
|
||
|
min_df,
|
||
|
included_subreddits,
|
||
|
topN,
|
||
|
exclude_phrases)
|
||
|
|
||
|
def author_cosine_similarities(outfile, min_df=2, included_subreddits=None, topN=10000):
|
||
|
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
|
||
|
'author',
|
||
|
outfile,
|
||
|
min_df,
|
||
|
included_subreddits,
|
||
|
topN,
|
||
|
exclude_phrases=False)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
fire.Fire({'term':term_cosine_similarities,
|
||
|
'author':author_cosine_similarities})
|
||
|
|