93 lines
3.3 KiB
Python
93 lines
3.3 KiB
Python
|
#!/usr/bin/env python3
|
||
|
import json
|
||
|
from datetime import datetime
|
||
|
from multiprocessing import Pool
|
||
|
from itertools import islice
|
||
|
from helper import find_dumps, open_fileset
|
||
|
import pandas as pd
|
||
|
import pyarrow as pa
|
||
|
import pyarrow.parquet as pq
|
||
|
|
||
|
globstr_base = "/gscratch/comdata/reddit_dumps/comments/RC_20*"
|
||
|
|
||
|
def parse_comment(comment, names= None):
|
||
|
if names is None:
|
||
|
names = ["id","subreddit","link_id","parent_id","created_utc","author","ups","downs","score","edited","subreddit_type","subreddit_id","stickied","is_submitter","body","error"]
|
||
|
|
||
|
try:
|
||
|
comment = json.loads(comment)
|
||
|
except json.decoder.JSONDecodeError as e:
|
||
|
print(e)
|
||
|
print(comment)
|
||
|
row = [None for _ in names]
|
||
|
row[-1] = "json.decoder.JSONDecodeError|{0}|{1}".format(e,comment)
|
||
|
return tuple(row)
|
||
|
|
||
|
row = []
|
||
|
for name in names:
|
||
|
if name == 'created_utc':
|
||
|
row.append(datetime.fromtimestamp(int(comment['created_utc']),tz=None))
|
||
|
elif name == 'edited':
|
||
|
val = comment[name]
|
||
|
if type(val) == bool:
|
||
|
row.append(val)
|
||
|
row.append(None)
|
||
|
else:
|
||
|
row.append(True)
|
||
|
row.append(datetime.fromtimestamp(int(val),tz=None))
|
||
|
elif name == "time_edited":
|
||
|
continue
|
||
|
elif name not in comment:
|
||
|
row.append(None)
|
||
|
|
||
|
else:
|
||
|
row.append(comment[name])
|
||
|
|
||
|
return tuple(row)
|
||
|
|
||
|
|
||
|
# conf = sc._conf.setAll([('spark.executor.memory', '20g'), ('spark.app.name', 'extract_reddit_timeline'), ('spark.executor.cores', '26'), ('spark.cores.max', '26'), ('spark.driver.memory','84g'),('spark.driver.maxResultSize','0'),('spark.local.dir','/gscratch/comdata/spark_tmp')])
|
||
|
|
||
|
dumpdir = "/gscratch/comdata/raw_data/reddit_dumps/comments"
|
||
|
|
||
|
files = list(find_dumps(dumpdir, base_pattern="RC_20*.*"))
|
||
|
|
||
|
pool = Pool(28)
|
||
|
|
||
|
stream = open_fileset(files)
|
||
|
|
||
|
N = 100000
|
||
|
|
||
|
rows = pool.imap_unordered(parse_comment, stream, chunksize=int(N/28))
|
||
|
|
||
|
schema = pa.schema([
|
||
|
pa.field('id', pa.string(), nullable=True),
|
||
|
pa.field('subreddit', pa.string(), nullable=True),
|
||
|
pa.field('link_id', pa.string(), nullable=True),
|
||
|
pa.field('parent_id', pa.string(), nullable=True),
|
||
|
pa.field('created_utc', pa.timestamp('ms'), nullable=True),
|
||
|
pa.field('author', pa.string(), nullable=True),
|
||
|
pa.field('ups', pa.int64(), nullable=True),
|
||
|
pa.field('downs', pa.int64(), nullable=True),
|
||
|
pa.field('score', pa.int64(), nullable=True),
|
||
|
pa.field('edited', pa.bool_(), nullable=True),
|
||
|
pa.field('time_edited', pa.timestamp('ms'), nullable=True),
|
||
|
pa.field('subreddit_type', pa.string(), nullable=True),
|
||
|
pa.field('subreddit_id', pa.string(), nullable=True),
|
||
|
pa.field('stickied', pa.bool_(), nullable=True),
|
||
|
pa.field('is_submitter', pa.bool_(), nullable=True),
|
||
|
pa.field('body', pa.string(), nullable=True),
|
||
|
pa.field('error', pa.string(), nullable=True),
|
||
|
])
|
||
|
|
||
|
with pq.ParquetWriter("/gscratch/comdata/output/reddit_comments.parquet_temp",schema=schema,compression='snappy',flavor='spark') as writer:
|
||
|
while True:
|
||
|
chunk = islice(rows,N)
|
||
|
pddf = pd.DataFrame(chunk, columns=schema.names)
|
||
|
table = pa.Table.from_pandas(pddf,schema=schema)
|
||
|
if table.shape[0] == 0:
|
||
|
break
|
||
|
writer.write_table(table)
|
||
|
|
||
|
writer.close()
|