13
0
cdsc_reddit/clustering/select_kmeans.py

93 lines
3.4 KiB
Python
Raw Normal View History

from sklearn.metrics import silhouette_score
from sklearn.cluster import AffinityPropagation
from functools import partial
from clustering import _kmeans_clustering, read_similarity_mat, sim_to_dist, process_clustering_result, clustering_result
from dataclasses import dataclass
from multiprocessing import Pool, cpu_count, Array, Process
from pathlib import Path
from itertools import product, starmap
import numpy as np
import pandas as pd
import fire
import sys
@dataclass
class kmeans_clustering_result(clustering_result):
n_clusters:int
n_init:int
# silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying.
def do_clustering(n_clusters, n_init, name, mat, subreddits, max_iter, outdir:Path, random_state, verbose, alt_mat, overwrite=False):
if name is None:
name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{preference_quantile}"
print(name)
sys.stdout.flush()
outpath = outdir / (str(name) + ".feather")
print(outpath)
mat = sim_to_dist(mat)
clustering = _kmeans_clustering(mat, outpath, n_clusters, n_init, max_iter, random_state, verbose)
outpath.parent.mkdir(parents=True,exist_ok=True)
cluster_data.to_feather(outpath)
cluster_data = process_clustering_result(clustering, subreddits)
try:
score = silhouette_score(mat, clustering.labels_, metric='precomputed')
except ValueError:
score = None
if alt_mat is not None:
alt_distances = sim_to_dist(alt_mat)
try:
alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed')
except ValueError:
alt_score = None
res = kmeans_clustering_result(outpath=outpath,
max_iter=max_iter,
n_clusters=n_clusters,
n_init = n_init,
silhouette_score=score,
alt_silhouette_score=score,
name=str(name))
return res
# alt similiarities is for checking the silhouette coefficient of an alternative measure of similarity (e.g., topic similarities for user clustering).
def select_kmeans_clustering(similarities, outdir, outinfo, n_clusters=[1000], max_iter=100000, n_init=10, random_state=1968, verbose=True, alt_similarities=None):
n_clusters = list(map(int,n_clusters))
n_init = list(map(int,n_init))
if type(outdir) is str:
outdir = Path(outdir)
outdir.mkdir(parents=True,exist_ok=True)
subreddits, mat = read_similarity_mat(similarities,use_threads=True)
if alt_similarities is not None:
alt_mat = read_similarity_mat(alt_similarities,use_threads=True)
else:
alt_mat = None
# get list of tuples: the combinations of hyperparameters
hyper_grid = product(n_clusters, n_init)
hyper_grid = (t + (str(i),) for i, t in enumerate(hyper_grid))
_do_clustering = partial(do_clustering, mat=mat, subreddits=subreddits, outdir=outdir, max_iter=max_iter, random_state=random_state, verbose=verbose, alt_mat=alt_mat)
# call starmap
print("running clustering selection")
clustering_data = starmap(_do_clustering, hyper_grid)
clustering_data = pd.DataFrame(list(clustering_data))
clustering_data.to_csv(outinfo)
return clustering_data
if __name__ == "__main__":
x = fire.Fire(select_kmeans_clustering)