13
0

grid sweep selection for clustering hyperparameters

This commit is contained in:
Nate E TeBlunthuis 2021-04-20 11:33:54 -07:00
parent 628a70734b
commit 01a4c35358
3 changed files with 144 additions and 27 deletions

View File

@ -1,32 +1,52 @@
#srun_cdsc='srun -p comdata-int -A comdata --time=300:00:00 --time-min=00:15:00 --mem=100G --ntasks=1 --cpus-per-task=28' #srun_cdsc='srun -p comdata-int -A comdata --time=300:00:00 --time-min=00:15:00 --mem=100G --ntasks=1 --cpus-per-task=28'
all:/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather /gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather /gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather /gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather srun_singularity=source /gscratch/comdata/users/nathante/cdsc_reddit/bin/activate && srun_singularity.sh
#all:/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather /gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather /gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather /gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather /gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather similarity_data=/gscratch/comdata/output/reddit_similarity
clustering_data=/gscratch/comdata/output/reddit_clustering
selection_grid="--max_iter=10000 --convergence_iter=15,30,100 --preference_quantile=0.85 --damping=0.5,0.6,0.7,0.8,0.85,0.9,0.95,0.97,0.99, --preference_quantile=0.1,0.3,0.5,0.7,0.9"
all:$(clustering_data)/subreddit_comment_authors_30k.feather $(clustering_data)/subreddit_authors-tf_similarities_30k.feather $(clustering_data)/subreddit_comment_authors_10k.feather $(clustering_data)/subreddit_authors-tf_similarities_10k.feather $(clustering_data)/subreddit_comment_terms_30k.feather $(clustering_data)/subreddit_comment_terms_10k.feather
/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather $(clustering_data)/subreddit_comment_authors_10k.feather:selection.py $(similarity_data)/subreddit_comment_authors_10k.feather clustering.py
# $srun_cdsc python3 $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors_10k.feather $(clustering_data)/subreddit_comment_authors_10k $(selection_grid) -J 20
start_spark_and_run.sh 1 clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.85 --damping=0.85
/gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather $(clustering_data)/subreddit_comment_terms_10k.feather:selection.py $(similarity_data)/subreddit_comment_terms_10k.feather clustering.py
# $srun_cdsc python3 $(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_terms_10k.feather $(clustering_data)/subreddit_comment_terms_10k $(selection_grid) -J 20
start_spark_and_run.sh 1 clustering.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather /gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather ---max_iter=1000 --convergence_iter=15 --preference_quantile=0.9 --damping=0.5
$(clustering_data)/subreddit_authors-tf_similarities_10k.feather:clustering.py $(similarity_data)/subreddit_comment_authors-tf_10k.feather
$(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors-tf_10k.feather $(clustering_data)/subreddit_comment_authors-tf_10k $(selection_grid) -J 20
$(clustering_data)/subreddit_comment_authors_30k.feather:selection.py $(similarity_data)/subreddit_comment_authors_30k.feather clustering.py
$(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors_30k.feather $(clustering_data)/subreddit_comment_authors_30k $(selection_grid) -J 10
$(clustering_data)/subreddit_comment_terms_30k.feather:selection.py $(similarity_data)/subreddit_comment_terms_30k.feather clustering.py
$(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_terms_30k.feather $(clustering_data)/subreddit_comment_terms_30k $(selection_grid) -J 10
$(clustering_data)/subreddit_authors-tf_similarities_30k.feather:clustering.py $(similarity_data)/subreddit_comment_authors-tf_30k.feather
$(srun_singularity) python3 selection.py $(similarity_data)/subreddit_comment_authors-tf_30k.feather $(clustering_data)/subreddit_comment_authors-tf_30k $(selection_grid) -J 8
# $(clustering_data)/subreddit_comment_authors_100k.feather:clustering.py $(similarity_data)/subreddit_comment_authors_100k.feather
# $(srun_singularity) python3 clustering.py $(similarity_data)/subreddit_comment_authors_100k.feather $(clustering_data)/subreddit_comment_authors_100k.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.85 --damping=0.85
# $(clustering_data)/comment_terms_100k.feather:clustering.py $(similarity_data)/subreddit_comment_terms_100k.feather
# $(srun_singularity) python3 clustering.py $(similarity_data)/comment_terms_10000.feather $(clustering_data)/comment_terms_10000.feather ---max_iter=1000 --convergence_iter=15 --preference_quantile=0.9 --damping=0.5
# $(clustering_data)/subreddit_comment_author-tf_100k.feather:clustering.py $(similarity_data)/subreddit_comment_author-tf_100k.feather
# $(srun_singularity) python3 clustering.py $(similarity_data)/subreddit_comment_author-tf_100k.parquet $(clustering_data)/subreddit_comment_author-tf_100k.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.5 --damping=0.85
/gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet
# $srun_cdsc
start_spark_and_run.sh 1 clustering.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet /gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.5 --damping=0.85
# it's pretty difficult to get a result that isn't one huge megacluster. A sign that it's bullcrap # it's pretty difficult to get a result that isn't one huge megacluster. A sign that it's bullcrap
# /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather # /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather
# ./clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.9 --damping=0.85 # ./clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.9 --damping=0.85
/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet # /gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet
start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet --output=/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather # start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet --output=/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather
# /gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather # /gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather
# python3 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather --output=/gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather # python3 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather --output=/gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather
/gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather # /gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
# $srun_cdsc python3 # # $srun_cdsc python3
start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather --output=/gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather # start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather --output=/gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather

View File

@ -1,29 +1,36 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
# TODO: replace prints with logging.
import sys
import pandas as pd import pandas as pd
import numpy as np import numpy as np
from sklearn.cluster import AffinityPropagation from sklearn.cluster import AffinityPropagation
import fire import fire
from pathlib import Path
def affinity_clustering(similarities, output, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True): def read_similarity_mat(similarities, use_threads=True):
df = pd.read_feather(similarities, use_threads=use_threads)
mat = np.array(df.drop('_subreddit',1))
n = mat.shape[0]
mat[range(n),range(n)] = 1
return (df._subreddit,mat)
def affinity_clustering(similarities, *args, **kwargs):
subreddits, mat = read_similarity_mat(similarities)
return _affinity_clustering(mat, subreddits, *args, **kwargs)
def _affinity_clustering(mat, subreddits, output, damping=0.9, max_iter=100000, convergence_iter=30, preference_quantile=0.5, random_state=1968, verbose=True):
''' '''
similarities: feather file with a dataframe of similarity scores similarities: feather file with a dataframe of similarity scores
preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits. preference_quantile: parameter controlling how many clusters to make. higher values = more clusters. 0.85 is a good value with 3000 subreddits.
damping: parameter controlling how iterations are merged. Higher values make convergence faster and more dependable. 0.85 is a good value for the 10000 subreddits by author. damping: parameter controlling how iterations are merged. Higher values make convergence faster and more dependable. 0.85 is a good value for the 10000 subreddits by author.
''' '''
print(f"damping:{damping}; convergenceIter:{convergence_iter}; preferenceQuantile:{preference_quantilne}")
df = pd.read_feather(similarities)
n = df.shape[0]
mat = np.array(df.drop('_subreddit',1))
mat[range(n),range(n)] = 1
assert(all(np.diag(mat)==1))
preference = np.quantile(mat,preference_quantile) preference = np.quantile(mat,preference_quantile)
print(f"preference is {preference}") print(f"preference is {preference}")
print("data loaded") print("data loaded")
sys.stdout.flush()
clustering = AffinityPropagation(damping=damping, clustering = AffinityPropagation(damping=damping,
max_iter=max_iter, max_iter=max_iter,
convergence_iter=convergence_iter, convergence_iter=convergence_iter,
@ -39,7 +46,7 @@ def affinity_clustering(similarities, output, damping=0.9, max_iter=100000, conv
print(f"found {len(set(clusters))} clusters") print(f"found {len(set(clusters))} clusters")
cluster_data = pd.DataFrame({'subreddit': df.subreddit,'cluster':clustering.labels_}) cluster_data = pd.DataFrame({'subreddit': subreddits,'cluster':clustering.labels_})
cluster_sizes = cluster_data.groupby("cluster").count() cluster_sizes = cluster_data.groupby("cluster").count()
print(f"the largest cluster has {cluster_sizes.subreddit.max()} members") print(f"the largest cluster has {cluster_sizes.subreddit.max()} members")
@ -48,7 +55,10 @@ def affinity_clustering(similarities, output, damping=0.9, max_iter=100000, conv
print(f"{(cluster_sizes.subreddit==1).sum()} clusters have 1 member") print(f"{(cluster_sizes.subreddit==1).sum()} clusters have 1 member")
sys.stdout.flush()
cluster_data.to_feather(output) cluster_data.to_feather(output)
print(f"saved {output}")
return clustering
if __name__ == "__main__": if __name__ == "__main__":
fire.Fire(affinity_clustering) fire.Fire(affinity_clustering)

87
clustering/selection.py Normal file
View File

@ -0,0 +1,87 @@
from sklearn.metrics import silhouette_score
from sklearn.cluster import AffinityPropagation
from functools import partial
from clustering import _affinity_clustering, read_similarity_mat
from dataclasses import dataclass
from multiprocessing import Pool, cpu_count, Array, Process
from pathlib import Path
from itertools import product, starmap
import pandas as pd
import fire
import sys
# silhouette is the only one that doesn't need the feature matrix. So it's probably the only one that's worth trying.
@dataclass
class clustering_result:
outpath:Path
damping:float
max_iter:int
convergence_iter:int
preference_quantile:float
silhouette_score:float
alt_silhouette_score:float
name:str
def do_clustering(damping, convergence_iter, preference_quantile, name, mat, subreddits, max_iter, outdir:Path, random_state, verbose, alt_mat):
if name is None:
name = f"damping-{damping}_convergenceIter-{convergence_iter}_preferenceQuantile-{convergence_iter}"
print(name)
sys.stdout.flush()
outpath = outdir / (str(name) + ".feather")
print(outpath)
clustering = _affinity_clustering(mat, subreddits, outpath, damping, max_iter, convergence_iter, preference_quantile, random_state, verbose)
score = silhouette_score(clustering.affinity_matrix_, clustering.labels_, metric='precomputed')
alt_score = silhouette_score(alt_mat, clustering.labels_, metric='precomputed')
res = clustering_result(outpath=outpath,
damping=damping,
max_iter=max_iter,
convergence_iter=convergence_iter,
preference_quantile=preference_quantile,
silhouette_score=score,
alt_silhouette_score=score,
name=str(name))
return res
# alt similiarities is for checking the silhouette coefficient of an alternative measure of similarity (e.g., topic similarities for user clustering).
def select_affinity_clustering(similarities, outdir, damping=[0.9], max_iter=100000, convergence_iter=[30], preference_quantile=[0.5], random_state=1968, verbose=True, alt_similarities=None, J=None):
damping = list(map(float,damping))
convergence_iter = convergence_iter = list(map(int,convergence_iter))
preference_quantile = list(map(float,preference_quantile))
if type(outdir) is str:
outdir = Path(outdir)
outdir.mkdir(parents=True,exist_ok=True)
subreddits, mat = read_similarity_mat(similarities,use_threads=True)
if alt_similarities is not None:
alt_mat = read_similarity_mat(alt_similarities,use_threads=True)
else:
alt_mat = None
if J is None:
J = cpu_count()
pool = Pool(J)
# get list of tuples: the combinations of hyperparameters
hyper_grid = product(damping, convergence_iter, preference_quantile)
hyper_grid = (t + (str(i),) for i, t in enumerate(hyper_grid))
_do_clustering = partial(do_clustering, mat=mat, subreddits=subreddits, outdir=outdir, max_iter=max_iter, random_state=random_state, verbose=verbose, alt_mat=alt_mat)
# similarities = Array('d', mat)
# call pool.starmap
print("running clustering selection")
clustering_data = pool.starmap(_do_clustering, hyper_grid)
clustering_data = pd.DataFrame(list(clustering_data))
return clustering_data
if __name__ == "__main__":
fire.Fire(select_affinity_clustering)