support isolates in visualization
This commit is contained in:
parent
582cf263ea
commit
0b95bea30e
@ -13,10 +13,7 @@ from nltk.corpus import stopwords
|
||||
from nltk.util import ngrams
|
||||
import string
|
||||
from random import random
|
||||
|
||||
# remove urls
|
||||
# taken from https://stackoverflow.com/questions/3809401/what-is-a-good-regular-expression-to-match-a-url
|
||||
urlregex = re.compile(r"[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)")
|
||||
from redditcleaner import clean
|
||||
|
||||
# compute term frequencies for comments in each subreddit by week
|
||||
def weekly_tf(partition, mwe_pass = 'first'):
|
||||
@ -95,8 +92,8 @@ def weekly_tf(partition, mwe_pass = 'first'):
|
||||
# lowercase
|
||||
text = text.lower()
|
||||
|
||||
# remove urls
|
||||
text = urlregex.sub("", text)
|
||||
# redditcleaner removes reddit markdown(newlines, quotes, bullet points, links, strikethrough, spoiler, code, superscript, table, headings)
|
||||
text = clean(text)
|
||||
|
||||
# sentence tokenize
|
||||
sentences = sent_tokenize(text)
|
||||
@ -107,14 +104,13 @@ def weekly_tf(partition, mwe_pass = 'first'):
|
||||
# remove punctuation
|
||||
|
||||
sentences = map(remove_punct, sentences)
|
||||
|
||||
# remove sentences with less than 2 words
|
||||
sentences = filter(lambda sentence: len(sentence) > 2, sentences)
|
||||
|
||||
# datta et al. select relatively common phrases from the reddit corpus, but they don't really explain how. We'll try that in a second phase.
|
||||
# they say that the extract 1-4 grams from 10% of the sentences and then find phrases that appear often relative to the original terms
|
||||
# here we take a 10 percent sample of sentences
|
||||
if mwe_pass == 'first':
|
||||
|
||||
# remove sentences with less than 2 words
|
||||
sentences = filter(lambda sentence: len(sentence) > 2, sentences)
|
||||
sentences = list(sentences)
|
||||
for sentence in sentences:
|
||||
if random() <= 0.1:
|
||||
|
@ -1,7 +1,7 @@
|
||||
#all: /gscratch/comdata/output/reddit_similarity/tfidf/comment_terms_130k.parquet /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_130k.parquet /gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms_130k.parquet /gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors_130k.parquet
|
||||
srun_singularity=source /gscratch/comdata/users/nathante/cdsc_reddit/bin/activate && srun_singularity.sh
|
||||
srun_singularity_huge=source /gscratch/comdata/users/nathante/cdsc_reddit/bin/activate && srun_singularity_huge.sh
|
||||
base_data=/gscratch/comdata/output/
|
||||
base_data=/gscratch/comdata/output
|
||||
similarity_data=${base_data}/reddit_similarity
|
||||
tfidf_data=${similarity_data}/tfidf
|
||||
tfidf_weekly_data=${similarity_data}/tfidf_weekly
|
||||
@ -97,7 +97,7 @@ ${tfidf_data}/tfidf_weekly/comment_authors_100k.parquet: /gscratch/comdata/outpu
|
||||
start_spark_and_run.sh 4 tfidf.py authors_weekly --topN=100000 --outpath=${tfidf_weekly_data}/comment_authors_100k.parquet
|
||||
|
||||
${tfidf_weekly_data}/comment_terms_30k.parquet: /gscratch/comdata/output/reddit_ngrams/comment_terms.parquet ${similarity_data}/subreddits_by_num_comments.csv
|
||||
start_spark_and_run.sh 4 tfidf.py terms_weekly --topN=30000 --outpath=${tfidf_weekly_data}/comment_authors_30k.parquet
|
||||
start_spark_and_run.sh 2 tfidf.py terms_weekly --topN=30000 --outpath=${tfidf_weekly_data}/comment_authors_30k.parquet
|
||||
|
||||
${tfidf_weekly_data}/comment_authors_30k.parquet: /gscratch/comdata/output/reddit_ngrams/comment_terms.parquet ${similarity_data}/subreddits_by_num_comments.csv
|
||||
start_spark_and_run.sh 4 tfidf.py authors_weekly --topN=30000 --outpath=${tfidf_weekly_data}/comment_authors_30k.parquet
|
||||
|
@ -23,9 +23,6 @@ class tf_weight(Enum):
|
||||
infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet"
|
||||
cache_file = "/gscratch/comdata/users/nathante/cdsc_reddit/similarities/term_tfidf_entries_bak.parquet"
|
||||
|
||||
def termauthor_tfidf(term_tfidf_callable, author_tfidf_callable):
|
||||
|
||||
|
||||
# subreddits missing after this step don't have any terms that have a high enough idf
|
||||
# try rewriting without merges
|
||||
def reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, week=None, from_date=None, to_date=None, rescale_idf=True, tf_family=tf_weight.MaxTF):
|
||||
@ -283,7 +280,7 @@ def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weig
|
||||
df = df.withColumn("tf_idf", (0.5 + 0.5 * df.relative_tf) * df.idf)
|
||||
|
||||
df = df.repartition(400,'subreddit','week')
|
||||
dfwriter = df.write.partitionBy("week").sortBy("subreddit")
|
||||
dfwriter = df.write.partitionBy("week")
|
||||
return dfwriter
|
||||
|
||||
def _calc_tfidf(df, term_colname, tf_family):
|
||||
@ -339,7 +336,7 @@ def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm
|
||||
|
||||
df = _calc_tfidf(df, term_colname, tf_family)
|
||||
df = df.repartition('subreddit')
|
||||
dfwriter = df.write.sortBy("subreddit","tf")
|
||||
dfwriter = df.write
|
||||
return dfwriter
|
||||
|
||||
def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments_nonsfw.csv"):
|
||||
|
@ -22,8 +22,12 @@ def base_plot(plot_data):
|
||||
#
|
||||
# subreddit_select = alt.selection_single(on='click',fields=['subreddit'],bind=subreddit_dropdown,name='subreddit_click')
|
||||
|
||||
base_scale = alt.Scale(scheme={"name":'category10',
|
||||
"extent":[0,100],
|
||||
"count":10})
|
||||
|
||||
color = alt.condition(cluster_click_select ,
|
||||
alt.Color(field='color',type='nominal',scale=alt.Scale(scheme='category10')),
|
||||
alt.Color(field='color',type='nominal',scale=base_scale),
|
||||
alt.value("lightgray"))
|
||||
|
||||
|
||||
@ -84,6 +88,11 @@ def viewport_plot(plot_data):
|
||||
return chart
|
||||
|
||||
def assign_cluster_colors(tsne_data, clusters, n_colors, n_neighbors = 4):
|
||||
isolate_color = 101
|
||||
|
||||
cluster_sizes = clusters.groupby('cluster').count()
|
||||
singletons = set(cluster_sizes.loc[cluster_sizes.subreddit == 1].reset_index().cluster)
|
||||
|
||||
tsne_data = tsne_data.merge(clusters,on='subreddit')
|
||||
|
||||
centroids = tsne_data.groupby('cluster').agg({'x':np.mean,'y':np.mean})
|
||||
@ -120,15 +129,17 @@ def assign_cluster_colors(tsne_data, clusters, n_colors, n_neighbors = 4):
|
||||
color_assignments = np.repeat(-1,len(centroids))
|
||||
|
||||
for i in range(len(centroids)):
|
||||
knn = indices[i]
|
||||
knn_colors = color_assignments[knn]
|
||||
available_colors = color_ids[list(set(color_ids) - set(knn_colors))]
|
||||
|
||||
if(len(available_colors) > 0):
|
||||
color_assignments[i] = available_colors[0]
|
||||
if (centroids.iloc[i].name == -1) or (i in singletons):
|
||||
color_assignments[i] = isolate_color
|
||||
else:
|
||||
raise Exception("Can't color this many neighbors with this many colors")
|
||||
knn = indices[i]
|
||||
knn_colors = color_assignments[knn]
|
||||
available_colors = color_ids[list(set(color_ids) - set(knn_colors))]
|
||||
|
||||
if(len(available_colors) > 0):
|
||||
color_assignments[i] = available_colors[0]
|
||||
else:
|
||||
raise Exception("Can't color this many neighbors with this many colors")
|
||||
|
||||
centroids = centroids.reset_index()
|
||||
colors = centroids.loc[:,['cluster']]
|
||||
@ -143,12 +154,13 @@ def build_visualization(tsne_data, clusters, output):
|
||||
# clusters = "/gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather"
|
||||
|
||||
tsne_data = pd.read_feather(tsne_data)
|
||||
tsne_data = tsne_data.rename(columns={'_subreddit':'subreddit'})
|
||||
clusters = pd.read_feather(clusters)
|
||||
|
||||
tsne_data = assign_cluster_colors(tsne_data,clusters,10,8)
|
||||
|
||||
# sr_per_cluster = tsne_data.groupby('cluster').subreddit.count().reset_index()
|
||||
# sr_per_cluster = sr_per_cluster.rename(columns={'subreddit':'cluster_size'})
|
||||
sr_per_cluster = tsne_data.groupby('cluster').subreddit.count().reset_index()
|
||||
sr_per_cluster = sr_per_cluster.rename(columns={'subreddit':'cluster_size'})
|
||||
|
||||
tsne_data = tsne_data.merge(sr_per_cluster,on='cluster')
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user