git-annex in nathante@mox2.hyak.local:/gscratch/comdata/users/nathante/cdsc-reddit
This commit is contained in:
parent
f8ff8b2d0f
commit
1bf206d219
37
fit_tsne.py
37
fit_tsne.py
@ -1,35 +1,34 @@
|
||||
import fire
|
||||
import pyarrow
|
||||
import pandas as pd
|
||||
from numpy import random
|
||||
import numpy as np
|
||||
from sklearn.manifold import TSNE
|
||||
|
||||
df = pd.read_feather("reddit_term_similarity_3000.feather")
|
||||
df = df.sort_values(['i','j'])
|
||||
similarities = "term_similarities_10000.feather"
|
||||
|
||||
n = max(df.i.max(),df.j.max())
|
||||
def fit_tsne(similarities, output, learning_rate=750, perplexity=50, n_iter=10000, early_exaggeration=20):
|
||||
'''
|
||||
similarities: feather file with a dataframe of similarity scores
|
||||
learning_rate: parameter controlling how fast the model converges. Too low and you get outliers. Too high and you get a ball.
|
||||
perplexity: number of neighbors to use. the default of 50 is often good.
|
||||
|
||||
def zero_pad(grp):
|
||||
p = grp.shape[0]
|
||||
grp = grp.sort_values('j')
|
||||
return np.concatenate([np.zeros(n-p),np.ones(1),np.array(grp.value)])
|
||||
'''
|
||||
df = pd.read_feather(similarities)
|
||||
|
||||
col_names = df.sort_values('j').loc[:,['subreddit_j']].drop_duplicates()
|
||||
first_name = list(set(df.subreddit_i) - set(df.subreddit_j))[0]
|
||||
col_names = [first_name] + list(col_names.subreddit_j)
|
||||
mat = df.groupby('i').apply(zero_pad)
|
||||
mat.loc[n] = np.concatenate([np.zeros(n),np.ones(1)])
|
||||
mat = np.stack(mat)
|
||||
|
||||
mat = mat + np.tril(mat.transpose(),k=-1)
|
||||
n = df.shape[0]
|
||||
mat = np.array(df.drop('subreddit',1),dtype=np.float64)
|
||||
mat[range(n),range(n)] = 1
|
||||
mat[mat > 1] = 1
|
||||
dist = 2*np.arccos(mat)/np.pi
|
||||
|
||||
tsne_model = TSNE(2,learning_rate=750,perplexity=50,n_iter=10000,metric='precomputed',early_exaggeration=20,n_jobs=-1)
|
||||
|
||||
tsne_fit_model = tsne_model.fit(dist)
|
||||
|
||||
tsne_fit_whole = tsne_fit_model.fit_transform(dist)
|
||||
|
||||
plot_data = pd.DataFrame({'x':tsne_fit_whole[:,0],'y':tsne_fit_whole[:,1], 'subreddit':col_names})
|
||||
plot_data = pd.DataFrame({'x':tsne_fit_whole[:,0],'y':tsne_fit_whole[:,1], 'subreddit':df.subreddit})
|
||||
|
||||
plot_data.to_feather("tsne_subreddit_fit.feather")
|
||||
plot_data.to_feather(output)
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(fit_tsne)
|
||||
|
1
visualization/data/term_affinityprop_10000.feather
Symbolic link
1
visualization/data/term_affinityprop_10000.feather
Symbolic link
@ -0,0 +1 @@
|
||||
../../.git/annex/objects/Qk/wG/SHA256E-s145210--14a2ad6660d1e4015437eff556ec349dd10a115a4f96594152a29e83d00aa784/SHA256E-s145210--14a2ad6660d1e4015437eff556ec349dd10a115a4f96594152a29e83d00aa784
|
1
visualization/data/term_affinityprop_3000.feather
Symbolic link
1
visualization/data/term_affinityprop_3000.feather
Symbolic link
@ -0,0 +1 @@
|
||||
../../.git/annex/objects/w7/2f/SHA256E-s44458--f1c5247775ecf06514a0ff9e523e944bc8fcd9d0fdb6f214cc1329b759d4354e/SHA256E-s44458--f1c5247775ecf06514a0ff9e523e944bc8fcd9d0fdb6f214cc1329b759d4354e
|
1
visualization/data/term_tsne_10000.feather
Symbolic link
1
visualization/data/term_tsne_10000.feather
Symbolic link
@ -0,0 +1 @@
|
||||
../../.git/annex/objects/WX/v3/SHA256E-s190874--c2aea719f989dde297ca5f13371e156693c574e44acd9a0e313e5e3a3ad4b543/SHA256E-s190874--c2aea719f989dde297ca5f13371e156693c574e44acd9a0e313e5e3a3ad4b543
|
1
visualization/data/term_tsne_3000.feather
Symbolic link
1
visualization/data/term_tsne_3000.feather
Symbolic link
@ -0,0 +1 @@
|
||||
../../.git/annex/objects/mq/2z/SHA256E-s58834--2e7b3ee11f47011fd9b34bddf8f1e788d35ab9c9e0bb6a1301b0b916135400cf/SHA256E-s58834--2e7b3ee11f47011fd9b34bddf8f1e788d35ab9c9e0bb6a1301b0b916135400cf
|
Loading…
Reference in New Issue
Block a user