Compute IDF for terms and authors.
This commit is contained in:
parent
2d425600a8
commit
2740f55915
@ -10,11 +10,9 @@
|
|||||||
## Walltime (12 hours)
|
## Walltime (12 hours)
|
||||||
#SBATCH --time=12:00:00
|
#SBATCH --time=12:00:00
|
||||||
## Memory per node
|
## Memory per node
|
||||||
#SBATCH --mem=100G
|
#SBATCH --mem=32G
|
||||||
#SBATCH --cpus-per-task=4
|
#SBATCH --cpus-per-task=4
|
||||||
#SBATCH --ntasks=1
|
#SBATCH --ntasks=1
|
||||||
|
|
||||||
|
|
||||||
module load parallel_sql
|
module load parallel_sql
|
||||||
|
|
||||||
#Put here commands to load other modules (e.g. matlab etc.)
|
#Put here commands to load other modules (e.g. matlab etc.)
|
||||||
|
@ -26,4 +26,4 @@ df2.write.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet
|
|||||||
df = df.repartition('author')
|
df = df.repartition('author')
|
||||||
df3 = df.sort(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
|
df3 = df.sort(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
|
||||||
df3 = df3.sortWithinPartitions(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
|
df3 = df3.sortWithinPartitions(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
|
||||||
df3.write.parquet("/gscratch/comdata/output/reddit_comments_by_author.parquet", mode='overwrite')
|
df3.write.parquet("/gscratch/comdata/output/reddit_comments_by_author.parquet", mode='overwrite',compression='snappy')
|
||||||
|
43
idf_authors.py
Normal file
43
idf_authors.py
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
from pyspark.sql import functions as f
|
||||||
|
from pyspark.sql import SparkSession
|
||||||
|
|
||||||
|
spark = SparkSession.builder.getOrCreate()
|
||||||
|
df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/")
|
||||||
|
|
||||||
|
max_subreddit_week_authors = df.groupby(['subreddit','week']).max('tf')
|
||||||
|
max_subreddit_week_authors = max_subreddit_week_authors.withColumnRenamed('max(tf)','sr_week_max_tf')
|
||||||
|
|
||||||
|
df = df.join(max_subreddit_week_authors, ['subreddit','week'])
|
||||||
|
|
||||||
|
df = df.withColumn("relative_tf", df.tf / df.sr_week_max_tf)
|
||||||
|
|
||||||
|
# group by term / week
|
||||||
|
idf = df.groupby(['author','week']).count()
|
||||||
|
|
||||||
|
idf = idf.withColumnRenamed('count','idf')
|
||||||
|
|
||||||
|
# output: term | week | df
|
||||||
|
#idf.write.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_sorted_tf.parquet_temp",mode='overwrite',compression='snappy')
|
||||||
|
|
||||||
|
# collect the dictionary to make a pydict of terms to indexes
|
||||||
|
authors = idf.select('author').distinct()
|
||||||
|
authors = authors.withColumn('author_id',f.monotonically_increasing_id())
|
||||||
|
|
||||||
|
|
||||||
|
# map terms to indexes in the tfs and the idfs
|
||||||
|
df = df.join(terms,on='author')
|
||||||
|
|
||||||
|
idf = idf.join(terms,on='author')
|
||||||
|
|
||||||
|
# join on subreddit/term/week to create tf/dfs indexed by term
|
||||||
|
df = df.join(idf, on=['author_id','week','author'])
|
||||||
|
|
||||||
|
# agg terms by subreddit to make sparse tf/df vectors
|
||||||
|
df = df.withColumn("tf_idf",df.relative_tf / df.sr_week_max_tf)
|
||||||
|
|
||||||
|
df = df.groupby(['subreddit','week']).agg(f.collect_list(f.struct('term_id','tf_idf')).alias('tfidf_maps'))
|
||||||
|
|
||||||
|
df = df.withColumn('tfidf_vec', f.map_from_entries('tfidf_maps'))
|
||||||
|
|
||||||
|
# output: subreddit | week | tf/df
|
||||||
|
df.write.parquet('/gscratch/comdata/users/nathante/test_tfidf_authors.parquet',mode='overwrite',compression='snappy')
|
58
idf_comments.py
Normal file
58
idf_comments.py
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
from pyspark.sql import functions as f
|
||||||
|
from pyspark.sql import SparkSession
|
||||||
|
|
||||||
|
spark = SparkSession.builder.getOrCreate()
|
||||||
|
df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp")
|
||||||
|
|
||||||
|
max_subreddit_week_terms = df.groupby(['subreddit','week']).max('tf')
|
||||||
|
max_subreddit_week_terms = max_subreddit_week_terms.withColumnRenamed('max(tf)','sr_week_max_tf')
|
||||||
|
|
||||||
|
df = df.join(max_subreddit_week_terms, ['subreddit','week'])
|
||||||
|
|
||||||
|
df = df.withColumn("relative_tf", df.tf / df.sr_week_max_tf)
|
||||||
|
|
||||||
|
# group by term / week
|
||||||
|
idf = df.groupby(['term','week']).count()
|
||||||
|
|
||||||
|
idf = idf.withColumnRenamed('count','idf')
|
||||||
|
|
||||||
|
# output: term | week | df
|
||||||
|
#idf.write.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_sorted_tf.parquet_temp",mode='overwrite',compression='snappy')
|
||||||
|
|
||||||
|
# collect the dictionary to make a pydict of terms to indexes
|
||||||
|
terms = idf.select('term').distinct()
|
||||||
|
terms = terms.withColumn('term_id',f.monotonically_increasing_id())
|
||||||
|
|
||||||
|
|
||||||
|
# print('collected terms')
|
||||||
|
|
||||||
|
# terms = [t.term for t in terms]
|
||||||
|
# NTerms = len(terms)
|
||||||
|
# term_id_map = {term:i for i,term in enumerate(sorted(terms))}
|
||||||
|
|
||||||
|
# term_id_map = spark.sparkContext.broadcast(term_id_map)
|
||||||
|
|
||||||
|
# print('term_id_map is broadcasted')
|
||||||
|
|
||||||
|
# def map_term(x):
|
||||||
|
# return term_id_map.value[x]
|
||||||
|
|
||||||
|
# map_term_udf = f.udf(map_term)
|
||||||
|
|
||||||
|
# map terms to indexes in the tfs and the idfs
|
||||||
|
df = df.join(terms,on='term')
|
||||||
|
|
||||||
|
idf = idf.join(terms,on='term')
|
||||||
|
|
||||||
|
# join on subreddit/term/week to create tf/dfs indexed by term
|
||||||
|
df = df.join(idf, on=['term_id','week','term'])
|
||||||
|
|
||||||
|
# agg terms by subreddit to make sparse tf/df vectors
|
||||||
|
df = df.withColumn("tf_idf",df.relative_tf / df.sr_week_max_tf)
|
||||||
|
|
||||||
|
df = df.groupby(['subreddit','week']).agg(f.collect_list(f.struct('term_id','tf_idf')).alias('tfidf_maps'))
|
||||||
|
|
||||||
|
df = df.withColumn('tfidf_vec', f.map_from_entries('tfidf_maps'))
|
||||||
|
|
||||||
|
# output: subreddit | week | tf/df
|
||||||
|
df.write.parquet('/gscratch/comdata/users/nathante/test_tfidf.parquet',mode='overwrite',compression='snappy')
|
@ -1,6 +1,6 @@
|
|||||||
#!/usr/bin/env bash
|
#!/usr/bin/env bash
|
||||||
module load parallel_sql
|
module load parallel_sql
|
||||||
source ../bin/activate
|
source ./bin/activate
|
||||||
python3 tf_comments.py gen_task_list
|
python3 tf_comments.py gen_task_list
|
||||||
psu --del --Y
|
psu --del --Y
|
||||||
cat tf_task_list | psu --load
|
cat tf_task_list | psu --load
|
||||||
|
@ -161,9 +161,8 @@ def weekly_tf(partition, mwe_pass = 'first'):
|
|||||||
while True:
|
while True:
|
||||||
|
|
||||||
chunk = islice(outrows,outchunksize)
|
chunk = islice(outrows,outchunksize)
|
||||||
chunk = (c for c in chunk if c.subreddit is not None)
|
chunk = (c for c in chunk if c[1] is not None)
|
||||||
pddf = pd.DataFrame(chunk, columns=["is_token"] + schema.names)
|
pddf = pd.DataFrame(chunk, columns=["is_token"] + schema.names)
|
||||||
|
|
||||||
author_pddf = pddf.loc[pddf.is_token == False, schema.names]
|
author_pddf = pddf.loc[pddf.is_token == False, schema.names]
|
||||||
pddf = pddf.loc[pddf.is_token == True, schema.names]
|
pddf = pddf.loc[pddf.is_token == True, schema.names]
|
||||||
author_pddf = author_pddf.rename({'term':'author'}, axis='columns')
|
author_pddf = author_pddf.rename({'term':'author'}, axis='columns')
|
||||||
@ -185,7 +184,7 @@ def gen_task_list(mwe_pass='first'):
|
|||||||
with open("tf_task_list",'w') as outfile:
|
with open("tf_task_list",'w') as outfile:
|
||||||
for f in files:
|
for f in files:
|
||||||
if f.endswith(".parquet"):
|
if f.endswith(".parquet"):
|
||||||
outfile.write(f"python3 tf_comments.py weekly_tf --mwe-pass {mwe_pass} {f}\n")
|
outfile.write(f"./tf_comments.py weekly_tf --mwe-pass {mwe_pass} {f}\n")
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
fire.Fire({"gen_task_list":gen_task_list,
|
fire.Fire({"gen_task_list":gen_task_list,
|
||||||
|
Loading…
Reference in New Issue
Block a user