13
0

Compute IDF for terms and authors.

This commit is contained in:
Nate E TeBlunthuis 2020-08-23 11:57:55 -07:00
parent 2d425600a8
commit 2740f55915
6 changed files with 106 additions and 8 deletions

View File

@ -10,11 +10,9 @@
## Walltime (12 hours)
#SBATCH --time=12:00:00
## Memory per node
#SBATCH --mem=100G
#SBATCH --mem=32G
#SBATCH --cpus-per-task=4
#SBATCH --ntasks=1
module load parallel_sql
#Put here commands to load other modules (e.g. matlab etc.)

View File

@ -26,4 +26,4 @@ df2.write.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet
df = df.repartition('author')
df3 = df.sort(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
df3 = df3.sortWithinPartitions(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
df3.write.parquet("/gscratch/comdata/output/reddit_comments_by_author.parquet", mode='overwrite')
df3.write.parquet("/gscratch/comdata/output/reddit_comments_by_author.parquet", mode='overwrite',compression='snappy')

43
idf_authors.py Normal file
View File

@ -0,0 +1,43 @@
from pyspark.sql import functions as f
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/")
max_subreddit_week_authors = df.groupby(['subreddit','week']).max('tf')
max_subreddit_week_authors = max_subreddit_week_authors.withColumnRenamed('max(tf)','sr_week_max_tf')
df = df.join(max_subreddit_week_authors, ['subreddit','week'])
df = df.withColumn("relative_tf", df.tf / df.sr_week_max_tf)
# group by term / week
idf = df.groupby(['author','week']).count()
idf = idf.withColumnRenamed('count','idf')
# output: term | week | df
#idf.write.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_sorted_tf.parquet_temp",mode='overwrite',compression='snappy')
# collect the dictionary to make a pydict of terms to indexes
authors = idf.select('author').distinct()
authors = authors.withColumn('author_id',f.monotonically_increasing_id())
# map terms to indexes in the tfs and the idfs
df = df.join(terms,on='author')
idf = idf.join(terms,on='author')
# join on subreddit/term/week to create tf/dfs indexed by term
df = df.join(idf, on=['author_id','week','author'])
# agg terms by subreddit to make sparse tf/df vectors
df = df.withColumn("tf_idf",df.relative_tf / df.sr_week_max_tf)
df = df.groupby(['subreddit','week']).agg(f.collect_list(f.struct('term_id','tf_idf')).alias('tfidf_maps'))
df = df.withColumn('tfidf_vec', f.map_from_entries('tfidf_maps'))
# output: subreddit | week | tf/df
df.write.parquet('/gscratch/comdata/users/nathante/test_tfidf_authors.parquet',mode='overwrite',compression='snappy')

58
idf_comments.py Normal file
View File

@ -0,0 +1,58 @@
from pyspark.sql import functions as f
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
df = spark.read.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp")
max_subreddit_week_terms = df.groupby(['subreddit','week']).max('tf')
max_subreddit_week_terms = max_subreddit_week_terms.withColumnRenamed('max(tf)','sr_week_max_tf')
df = df.join(max_subreddit_week_terms, ['subreddit','week'])
df = df.withColumn("relative_tf", df.tf / df.sr_week_max_tf)
# group by term / week
idf = df.groupby(['term','week']).count()
idf = idf.withColumnRenamed('count','idf')
# output: term | week | df
#idf.write.parquet("/gscratch/comdata/users/nathante/reddit_tfidf_test_sorted_tf.parquet_temp",mode='overwrite',compression='snappy')
# collect the dictionary to make a pydict of terms to indexes
terms = idf.select('term').distinct()
terms = terms.withColumn('term_id',f.monotonically_increasing_id())
# print('collected terms')
# terms = [t.term for t in terms]
# NTerms = len(terms)
# term_id_map = {term:i for i,term in enumerate(sorted(terms))}
# term_id_map = spark.sparkContext.broadcast(term_id_map)
# print('term_id_map is broadcasted')
# def map_term(x):
# return term_id_map.value[x]
# map_term_udf = f.udf(map_term)
# map terms to indexes in the tfs and the idfs
df = df.join(terms,on='term')
idf = idf.join(terms,on='term')
# join on subreddit/term/week to create tf/dfs indexed by term
df = df.join(idf, on=['term_id','week','term'])
# agg terms by subreddit to make sparse tf/df vectors
df = df.withColumn("tf_idf",df.relative_tf / df.sr_week_max_tf)
df = df.groupby(['subreddit','week']).agg(f.collect_list(f.struct('term_id','tf_idf')).alias('tfidf_maps'))
df = df.withColumn('tfidf_vec', f.map_from_entries('tfidf_maps'))
# output: subreddit | week | tf/df
df.write.parquet('/gscratch/comdata/users/nathante/test_tfidf.parquet',mode='overwrite',compression='snappy')

View File

@ -1,6 +1,6 @@
#!/usr/bin/env bash
module load parallel_sql
source ../bin/activate
source ./bin/activate
python3 tf_comments.py gen_task_list
psu --del --Y
cat tf_task_list | psu --load

View File

@ -161,9 +161,8 @@ def weekly_tf(partition, mwe_pass = 'first'):
while True:
chunk = islice(outrows,outchunksize)
chunk = (c for c in chunk if c.subreddit is not None)
chunk = (c for c in chunk if c[1] is not None)
pddf = pd.DataFrame(chunk, columns=["is_token"] + schema.names)
author_pddf = pddf.loc[pddf.is_token == False, schema.names]
pddf = pddf.loc[pddf.is_token == True, schema.names]
author_pddf = author_pddf.rename({'term':'author'}, axis='columns')
@ -185,7 +184,7 @@ def gen_task_list(mwe_pass='first'):
with open("tf_task_list",'w') as outfile:
for f in files:
if f.endswith(".parquet"):
outfile.write(f"python3 tf_comments.py weekly_tf --mwe-pass {mwe_pass} {f}\n")
outfile.write(f"./tf_comments.py weekly_tf --mwe-pass {mwe_pass} {f}\n")
if __name__ == "__main__":
fire.Fire({"gen_task_list":gen_task_list,