13
0

Use groupby - joins instead of windows

This commit is contained in:
Nate E TeBlunthuis 2020-08-09 00:21:50 -07:00
parent f28effe2c3
commit 2d1c8013f2
3 changed files with 49 additions and 10 deletions

View File

@ -0,0 +1,24 @@
#!/bin/bash
## parallel_sql_job.sh
#SBATCH --job-name=tf_subreddit_comments
## Allocation Definition
#SBATCH --account=comdata-ckpt
#SBATCH --partition=ckpt
## Resources
## Nodes. This should always be 1 for parallel-sql.
#SBATCH --nodes=1
## Walltime (12 hours)
#SBATCH --time=12:00:00
## Memory per node
#SBATCH --mem=100G
#SBATCH --cpus-per-task=4
#SBATCH --ntasks=1
module load parallel_sql
#Put here commands to load other modules (e.g. matlab etc.)
#Below command means that parallel_sql will get tasks from the database
#and run them on the node (in parallel). So a 16 core node will have
#16 tasks running at one time.
parallel-sql --sql -a parallel --exit-on-term --jobs 4

8
run_tf_jobs.sh Executable file
View File

@ -0,0 +1,8 @@
#!/usr/bin/env bash
module load parallel_sql
source ../bin/activate
python3 tf_comments.py gen_task_list
psu --del --Y
cat tf_task_list | psu --load
for job in $(seq 1 50); do sbatch checkpoint_parallelsql.sbatch; done;

View File

@ -64,7 +64,15 @@ def weekly_tf(partition, mwe_pass = 'first'):
subreddit_weeks = groupby(rows, lambda r: (r.subreddit, r.week))
mwe_tokenize = MWETokenizer().tokenize
if mwe_pass != 'first':
mwe_dataset = ds.dataset(f'/gscratch/comdata/users/nathante/reddit_comment_ngrams_pwmi.parquet',format='parquet')
mwe_dataset = mwe_dataset.to_pandas(columns=['phrase','phraseCount','phrasePWMI'])
mwe_dataset = mwe_dataset.sort_values(['phrasePWMI'],ascending=False)
mwe_phrases = list(mwe_dataset.phrase[0:1000])
mwe_tokenize = MWETokenizer(mwe_phrases).tokenize
def remove_punct(sentence):
new_sentence = []
@ -119,6 +127,7 @@ def weekly_tf(partition, mwe_pass = 'first'):
else:
# remove stopWords
sentences = map(mwe_tokenize, sentences)
sentences = map(lambda s: filter(lambda token: token not in stopWords, s), sentences)
return chain(* sentences)
@ -142,19 +151,17 @@ def weekly_tf(partition, mwe_pass = 'first'):
outchunksize = 10000
with pq.ParquetWriter("/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp/{partition}",schema=schema,compression='snappy',flavor='spark') as writer, pq.ParquetWriter("/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/{partition}",schema=author_schema,compression='snappy',flavor='spark') as author_writer:
with pq.ParquetWriter(f"/gscratch/comdata/users/nathante/reddit_tfidf_test.parquet_temp/{partition}",schema=schema,compression='snappy',flavor='spark') as writer, pq.ParquetWriter(f"/gscratch/comdata/users/nathante/reddit_tfidf_test_authors.parquet_temp/{partition}",schema=author_schema,compression='snappy',flavor='spark') as author_writer:
while True:
chunk = islice(outrows,outchunksize)
pddf = pd.DataFrame(chunk, columns=["is_token"] + schema.names)
print(pddf)
author_pddf = pddf.loc[pddf.is_token == False]
author_pddf = author_pddf.rename({'term':'author'}, axis='columns')
author_pddf = author_pddf.loc[:,author_schema.names]
author_pddf = pddf.loc[pddf.is_token == False, schema.names]
pddf = pddf.loc[pddf.is_token == True, schema.names]
print(pddf)
print(author_pddf)
author_pddf = author_pddf.rename({'term':'author'}, axis='columns')
author_pddf = author_pddf.loc[:,author_schema.names]
table = pa.Table.from_pandas(pddf,schema=schema)
author_table = pa.Table.from_pandas(author_pddf,schema=author_schema)
if table.shape[0] == 0:
@ -171,7 +178,7 @@ def gen_task_list():
with open("tf_task_list",'w') as outfile:
for f in files:
if f.endswith(".parquet"):
outfile.write(f"source python3 tf_comments.py weekly_tf {f}\n")
outfile.write(f"python3 tf_comments.py weekly_tf {f}\n")
if __name__ == "__main__":
fire.Fire({"gen_task_list":gen_task_list,