13
0

reindex tfidf in memory instead of using spark

This commit is contained in:
Nate E TeBlunthuis 2021-04-30 12:48:19 -07:00
parent f20365c07e
commit 36b24ee933
2 changed files with 78 additions and 25 deletions

View File

@ -6,7 +6,9 @@ from pyspark.mllib.linalg.distributed import CoordinateMatrix
from tempfile import TemporaryDirectory
import pyarrow
import pyarrow.dataset as ds
from sklearn.metrics import pairwise_distances
from scipy.sparse import csr_matrix, issparse
from sklearn.decomposition import TruncatedSVD
import pandas as pd
import numpy as np
import pathlib
@ -17,7 +19,8 @@ class tf_weight(Enum):
MaxTF = 1
Norm05 = 2
infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet"
infile = "/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors_100k.parquet"
cache_file = "/gscratch/comdata/users/nathante/cdsc_reddit/similarities/term_tfidf_entries_bak.parquet"
def reindex_tfidf_time_interval(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
term = term_colname
@ -50,30 +53,57 @@ def reindex_tfidf_time_interval(infile, term_colname, min_df=None, max_df=None,
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
return(tempdir, subreddit_names)
def reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
# subreddits missing after this step don't have any terms that have a high enough idf
def reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, tf_family=tf_weight.MaxTF):
spark = SparkSession.builder.getOrCreate()
conf = spark.sparkContext.getConf()
print(exclude_phrases)
tfidf = spark.read.parquet(infile)
tfidf_ds = ds.dataset(infile)
if included_subreddits is None:
included_subreddits = select_topN_subreddits(topN)
else:
included_subreddits = set(open(included_subreddits))
if exclude_phrases == True:
tfidf = tfidf.filter(~f.col(term_colname).contains("_"))
ds_filter = ds.field("subreddit").isin(included_subreddits)
print("creating temporary parquet with matrix indicies")
tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits)
if min_df is not None:
ds_filter &= ds.field("count") >= min_df
tfidf = spark.read.parquet(tempdir.name)
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
if max_df is not None:
ds_filter &= ds.field("count") <= max_df
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
df = tfidf_ds.to_table(filter=ds_filter,columns=['subreddit','subreddit_id',term_id,'relative_tf']).to_pandas()
sub_ids = df.subreddit_id.drop_duplicates()
new_sub_ids = pd.DataFrame({'subreddit_id':old,'subreddit_id_new':new} for new, old in enumerate(sorted(sub_ids)))
df = df.merge(new_sub_ids,on='subreddit_id',how='inner',validate='many_to_one')
new_count = df.groupby(term_id)[term_id].aggregate(new_count='count').reset_index()
df = df.merge(new_count,on=term_id,how='inner',validate='many_to_one')
term_ids = df[term_id].drop_duplicates()
new_term_ids = pd.DataFrame({term_id:old,term_id_new:new} for new, old in enumerate(sorted(term_ids)))
df = df.merge(new_term_ids, on=term_id, validate='many_to_one')
N_docs = sub_ids.shape[0]
df['idf'] = np.log(N_docs/(1+df.new_count)) + 1
# agg terms by subreddit to make sparse tf/df vectors
if tf_family == tf_weight.MaxTF:
df["tf_idf"] = df.relative_tf * df.idf
else: # tf_fam = tf_weight.Norm05
df["tf_idf"] = (0.5 + 0.5 * df.relative_tf) * df.idf
subreddit_names = df.loc[:,['subreddit','subreddit_id_new']].drop_duplicates()
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
spark.stop()
return (tempdir, subreddit_names)
return(df, subreddit_names)
def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None, tfidf_colname='tf_idf'):
@ -82,13 +112,15 @@ def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=Non
'''
if from_date is not None or to_date is not None:
tempdir, subreddit_names = reindex_tfidf_time_interval(infile, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False, from_date=from_date, to_date=to_date)
mat = read_tfidf_matrix(tempdir.name, term_colname, tfidf_colname)
else:
tempdir, subreddit_names = reindex_tfidf(infile, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False)
entries, subreddit_names = reindex_tfidf(infile, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False)
mat = csr_matrix((entries[tfidf_colname],(entries[term_id_new]-1, entries.subreddit_id_new-1)))
print("loading matrix")
print("loading matrix")
# mat = read_tfidf_matrix("term_tfidf_entries7ejhvnvl.parquet", term_colname)
mat = read_tfidf_matrix(tempdir.name, term_colname, tfidf_colname)
print(f'computing similarities on mat. mat.shape:{mat.shape}')
print(f"size of mat is:{mat.data.nbytes}")
sims = simfunc(mat)
@ -101,7 +133,7 @@ def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=Non
print(f"len(subreddit_names.subreddit.values):{len(subreddit_names.subreddit.values)}")
sims = pd.DataFrame(sims)
sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
sims['subreddit'] = subreddit_names.subreddit.values
sims['_subreddit'] = subreddit_names.subreddit.values
p = Path(outfile)
@ -110,7 +142,7 @@ def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=Non
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
sims.to_feather(outfile)
tempdir.cleanup()
# tempdir.cleanup()
def read_tfidf_matrix_weekly(path, term_colname, week, tfidf_colname='tf_idf'):
term = term_colname
@ -135,10 +167,10 @@ def write_weekly_similarities(path, sims, week, names):
sims['week'] = week
p = pathlib.Path(path)
if not p.is_dir():
p.mkdir()
p.mkdir(exist_ok=True,parents=True)
# reformat as a pairwise list
sims = sims.melt(id_vars=['subreddit','week'],value_vars=names.subreddit.values)
sims = sims.melt(id_vars=['_subreddit','week'],value_vars=names.subreddit.values)
sims.to_parquet(p / week.isoformat())
def column_overlaps(mat):
@ -150,11 +182,29 @@ def column_overlaps(mat):
return intersection / den
# n_components is the latent dimensionality. sklearn recommends 100. More might be better
# if algorithm is 'random' instead of 'arpack' then n_iter gives the number of iterations.
# this function takes the svd and then the column similarities of it
def lsi_column_similarities(tfidfmat,n_components=300,n_iter=5,random_state=1968,algorithm='arpack'):
# first compute the lsi of the matrix
# then take the column similarities
svd = TruncatedSVD(n_components=n_components,random_state=random_state,algorithm='arpack')
mod = svd.fit(tfidfmat.T)
lsimat = mod.transform(tfidfmat.T)
sims = column_similarities(lsimat)
return sims
def column_similarities(mat):
norm = np.matrix(np.power(mat.power(2).sum(axis=0),0.5,dtype=np.float32))
mat = mat.multiply(1/norm)
sims = mat.T @ mat
return(sims)
return 1 - pairwise_distances(mat,metric='cosine')
# if issparse(mat):
# norm = np.matrix(np.power(mat.power(2).sum(axis=0),0.5,dtype=np.float32))
# mat = mat.multiply(1/norm)
# else:
# norm = np.matrix(np.power(np.power(mat,2).sum(axis=0),0.5,dtype=np.float32))
# mat = np.multiply(mat,1/norm)
# sims = mat.T @ mat
# return(sims)
def prep_tfidf_entries_weekly(tfidf, term_colname, min_df, max_df, included_subreddits):
@ -202,7 +252,8 @@ def prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits)
if min_df is None:
min_df = 0.1 * len(included_subreddits)
tfidf = tfidf.filter(f.col('count') >= min_df)
tfidf = tfidf.filter(f.col('count') >= min_df)
if max_df is not None:
tfidf = tfidf.filter(f.col('count') <= max_df)
@ -392,3 +443,5 @@ def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarit
rankdf = pd.read_csv(path)
included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
return included_subreddits