13
0

Reuse code for term and author cosine similarity.

This commit is contained in:
Nate E TeBlunthuis 2020-11-10 13:18:57 -08:00
parent 5632a971c6
commit 39c581bee9
2 changed files with 103 additions and 50 deletions

View File

@ -0,0 +1,78 @@
from pyspark.sql import functions as f
from pyspark.sql import SparkSession
from pyspark.sql import Window
import numpy as np
import pyarrow
import pandas as pd
import fire
from itertools import islice
from pathlib import Path
from similarities_helper import cosine_similarities
spark = SparkSession.builder.getOrCreate()
conf = spark.sparkContext.getConf()
# outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0;
def author_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True):
'''
Compute similarities between subreddits based on tfi-idf vectors of author comments
included_subreddits : string
Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits
similarity_threshold : double (default = 0)
set > 0 for large numbers of subreddits to get an approximate solution using the DIMSUM algorithm
https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get an exact solution using an O(N^2) algorithm.
min_df : int (default = 0.1 * (number of included_subreddits)
exclude terms that appear in fewer than this number of documents.
outfile: string
where to output csv and feather outputs
'''
print(outfile)
print(exclude_phrases)
tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_authors.parquet_test1/part-00000-107cee94-92d8-4265-b804-40f1e7f1aaf2-c000.snappy.parquet')
if included_subreddits is None:
included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
included_subreddits = {s.strip('\n') for s in included_subreddits}
else:
included_subreddits = set(open(included_subreddits))
sim_dist, tfidf = cosine_similarities(tfidf, 'author', min_df, included_subreddits, similarity_threshold)
p = Path(outfile)
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
sim_dist = sim_dist.entries.toDF()
sim_dist = sim_dist.repartition(1)
sim_dist.write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
spark.stop()
#instead of toLocalMatrix() why not read as entries and put strait into numpy
sim_entries = pd.read_parquet(output_parquet)
df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
df['subreddit_id_new'] = df['subreddit_id_new'] - 1
df = df.sort_values('subreddit_id_new').reset_index(drop=True)
df = df.set_index('subreddit_id_new')
similarities = sim_entries.join(df, on='i')
similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
similarities = similarities.join(df, on='j')
similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
similarities.write_feather(output_feather)
similarities.write_csv(output_csv)
return similarities
if __name__ == '__main__':
fire.Fire(term_cosine_similarities)

View File

@ -8,14 +8,13 @@ import pandas as pd
import fire
from itertools import islice
from pathlib import Path
min_df = 1000
from similarities_helper import build_cosine_similarities
spark = SparkSession.builder.getOrCreate()
conf = spark.sparkContext.getConf()
# outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0;
def spark_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0):
def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True):
'''
Compute similarities between subreddits based on tfi-idf vectors of comment texts
@ -33,73 +32,49 @@ https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get
where to output csv and feather outputs
'''
print(outfile)
print(exclude_phrases)
tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet')
if included_subreddits is None:
included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),500))
included_subreddits = [s.strip('\n') for s in included_subreddits]
included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
included_subreddits = {s.strip('\n') for s in included_subreddits}
else:
included_subreddits = set(open(included_subreddits))
if min_df is None:
min_df = 0.1 * len(included_subreddits)
if exclude_phrases == True:
tfidf = tfidf.filter(~f.col(term).contains("_"))
tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
sim_dist, tfidf = cosine_similarities(tfidf, 'term', min_df, include_subreddits, similarity_threshold)
# reset the subreddit ids
sub_ids = tfidf.select('subreddit_id').distinct()
sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id")))
tfidf = tfidf.join(sub_ids,'subreddit_id')
p = Path(outfile)
# only use terms in at least min_df included subreddits
new_count = tfidf.groupBy('term_id').agg(f.count('term_id').alias('new_count'))
term_ids = term_ids.join(new_count,'term_id')
term_ids = term_ids.filter(new_count >= min_df)
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
# reset the term ids
term_ids = tfidf.select('term_id').distinct()
term_ids = term_ids.withColumn("term_id_new",f.row_number().over(Window.orderBy("term_id")))
tfidf = tfidf.join(term_ids,'term_id')
# step 1 make an rdd of entires
# sorted by (dense) spark subreddit id
entries = tfidf.select(f.col("term_id_new")-1,f.col("subreddit_id_new")-1,"tf_idf").rdd
# step 2 make it into a distributed.RowMatrix
coordMat = CoordinateMatrix(entries)
# this needs to be an IndexedRowMatrix()
mat = coordMat.toRowMatrix()
#goal: build a matrix of subreddit columns and tf-idfs rows
sim_dist = mat.columnSimilarities(threshold=similarity_threshold)
print(sim_dist.numRows(), sim_dist.numCols())
sim_dist.entries.toDF().write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
spark.stop()
#instead of toLocalMatrix() why not read as entries and put strait into numpy
sim_entries = sim_dist.entries.collect()
sim_entries = pd.DataFrame([{'i':me.i,'j':me.j,'value':me.value} for me in sim_entries])
sim_entries = pd.read_parquet(output_parquet)
df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
df['subreddit_id_new'] = df['subreddit_id_new'] - 1
df = df.sort_values('subreddit_id_new').reset_index(drop=True)
df = df.set_index('subreddit_id_new')
similarities = sim_entries.join(df, on='i')
similarities = sim_entries.rename(columns={'subreddit':"subreddit_i"})
similarities = sim_entries.join(df, on='j')
similarities = sim_entries.rename(columns={'subreddit':"subreddit_j"})
similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
similarities = similarities.join(df, on='j')
similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
p = Path(outfile)
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
pyarrow.write_feather(similarities,output_feather)
pyarrow.write_csv(similarities,output_csv)
similarities.write_feather(output_feather)
similarities.write_csv(output_csv)
return similarities
if __name__ == '__main__':
fire.Fire(spark_similarities)
fire.Fire(term_cosine_similarities)