Reuse code for term and author cosine similarity.
This commit is contained in:
parent
5632a971c6
commit
39c581bee9
78
author_cosine_similarity.py
Normal file
78
author_cosine_similarity.py
Normal file
@ -0,0 +1,78 @@
|
|||||||
|
from pyspark.sql import functions as f
|
||||||
|
from pyspark.sql import SparkSession
|
||||||
|
from pyspark.sql import Window
|
||||||
|
import numpy as np
|
||||||
|
import pyarrow
|
||||||
|
import pandas as pd
|
||||||
|
import fire
|
||||||
|
from itertools import islice
|
||||||
|
from pathlib import Path
|
||||||
|
from similarities_helper import cosine_similarities
|
||||||
|
|
||||||
|
spark = SparkSession.builder.getOrCreate()
|
||||||
|
conf = spark.sparkContext.getConf()
|
||||||
|
|
||||||
|
# outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0;
|
||||||
|
def author_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True):
|
||||||
|
'''
|
||||||
|
Compute similarities between subreddits based on tfi-idf vectors of author comments
|
||||||
|
|
||||||
|
included_subreddits : string
|
||||||
|
Text file containing a list of subreddits to include (one per line) if included_subreddits is None then do the top 500 subreddits
|
||||||
|
|
||||||
|
similarity_threshold : double (default = 0)
|
||||||
|
set > 0 for large numbers of subreddits to get an approximate solution using the DIMSUM algorithm
|
||||||
|
https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get an exact solution using an O(N^2) algorithm.
|
||||||
|
|
||||||
|
min_df : int (default = 0.1 * (number of included_subreddits)
|
||||||
|
exclude terms that appear in fewer than this number of documents.
|
||||||
|
|
||||||
|
outfile: string
|
||||||
|
where to output csv and feather outputs
|
||||||
|
'''
|
||||||
|
|
||||||
|
print(outfile)
|
||||||
|
print(exclude_phrases)
|
||||||
|
|
||||||
|
tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf_authors.parquet_test1/part-00000-107cee94-92d8-4265-b804-40f1e7f1aaf2-c000.snappy.parquet')
|
||||||
|
|
||||||
|
if included_subreddits is None:
|
||||||
|
included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
|
||||||
|
included_subreddits = {s.strip('\n') for s in included_subreddits}
|
||||||
|
|
||||||
|
else:
|
||||||
|
included_subreddits = set(open(included_subreddits))
|
||||||
|
|
||||||
|
sim_dist, tfidf = cosine_similarities(tfidf, 'author', min_df, included_subreddits, similarity_threshold)
|
||||||
|
|
||||||
|
p = Path(outfile)
|
||||||
|
|
||||||
|
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
|
||||||
|
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
||||||
|
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
||||||
|
sim_dist = sim_dist.entries.toDF()
|
||||||
|
|
||||||
|
sim_dist = sim_dist.repartition(1)
|
||||||
|
sim_dist.write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
|
||||||
|
|
||||||
|
spark.stop()
|
||||||
|
|
||||||
|
#instead of toLocalMatrix() why not read as entries and put strait into numpy
|
||||||
|
sim_entries = pd.read_parquet(output_parquet)
|
||||||
|
|
||||||
|
df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
|
||||||
|
df['subreddit_id_new'] = df['subreddit_id_new'] - 1
|
||||||
|
df = df.sort_values('subreddit_id_new').reset_index(drop=True)
|
||||||
|
df = df.set_index('subreddit_id_new')
|
||||||
|
|
||||||
|
similarities = sim_entries.join(df, on='i')
|
||||||
|
similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
|
||||||
|
similarities = similarities.join(df, on='j')
|
||||||
|
similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
|
||||||
|
|
||||||
|
similarities.write_feather(output_feather)
|
||||||
|
similarities.write_csv(output_csv)
|
||||||
|
return similarities
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
fire.Fire(term_cosine_similarities)
|
@ -8,14 +8,13 @@ import pandas as pd
|
|||||||
import fire
|
import fire
|
||||||
from itertools import islice
|
from itertools import islice
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from similarities_helper import build_cosine_similarities
|
||||||
min_df = 1000
|
|
||||||
|
|
||||||
spark = SparkSession.builder.getOrCreate()
|
spark = SparkSession.builder.getOrCreate()
|
||||||
conf = spark.sparkContext.getConf()
|
conf = spark.sparkContext.getConf()
|
||||||
|
|
||||||
# outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0;
|
# outfile = '/gscratch/comdata/users/nathante/test_similarities_500.feather'; min_df = None; included_subreddits=None; similarity_threshold=0;
|
||||||
def spark_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0):
|
def term_cosine_similarities(outfile, min_df = None, included_subreddits=None, similarity_threshold=0, topN=500, exclude_phrases=True):
|
||||||
'''
|
'''
|
||||||
Compute similarities between subreddits based on tfi-idf vectors of comment texts
|
Compute similarities between subreddits based on tfi-idf vectors of comment texts
|
||||||
|
|
||||||
@ -33,73 +32,49 @@ https://stanford.edu/~rezab/papers/dimsum.pdf. If similarity_threshold=0 we get
|
|||||||
where to output csv and feather outputs
|
where to output csv and feather outputs
|
||||||
'''
|
'''
|
||||||
|
|
||||||
|
print(outfile)
|
||||||
|
print(exclude_phrases)
|
||||||
|
|
||||||
tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet')
|
tfidf = spark.read.parquet('/gscratch/comdata/users/nathante/subreddit_tfidf.parquet')
|
||||||
|
|
||||||
if included_subreddits is None:
|
if included_subreddits is None:
|
||||||
included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),500))
|
included_subreddits = list(islice(open("/gscratch/comdata/users/nathante/cdsc-reddit/top_25000_subs_by_comments.txt"),topN))
|
||||||
included_subreddits = [s.strip('\n') for s in included_subreddits]
|
included_subreddits = {s.strip('\n') for s in included_subreddits}
|
||||||
|
|
||||||
else:
|
else:
|
||||||
included_subreddits = set(open(included_subreddits))
|
included_subreddits = set(open(included_subreddits))
|
||||||
|
|
||||||
if min_df is None:
|
if exclude_phrases == True:
|
||||||
min_df = 0.1 * len(included_subreddits)
|
tfidf = tfidf.filter(~f.col(term).contains("_"))
|
||||||
|
|
||||||
tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
|
sim_dist, tfidf = cosine_similarities(tfidf, 'term', min_df, include_subreddits, similarity_threshold)
|
||||||
|
|
||||||
# reset the subreddit ids
|
p = Path(outfile)
|
||||||
sub_ids = tfidf.select('subreddit_id').distinct()
|
|
||||||
sub_ids = sub_ids.withColumn("subreddit_id_new",f.row_number().over(Window.orderBy("subreddit_id")))
|
|
||||||
tfidf = tfidf.join(sub_ids,'subreddit_id')
|
|
||||||
|
|
||||||
# only use terms in at least min_df included subreddits
|
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
|
||||||
new_count = tfidf.groupBy('term_id').agg(f.count('term_id').alias('new_count'))
|
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
||||||
term_ids = term_ids.join(new_count,'term_id')
|
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
||||||
term_ids = term_ids.filter(new_count >= min_df)
|
|
||||||
|
|
||||||
# reset the term ids
|
sim_dist.entries.toDF().write.parquet(str(output_parquet),mode='overwrite',compression='snappy')
|
||||||
term_ids = tfidf.select('term_id').distinct()
|
|
||||||
term_ids = term_ids.withColumn("term_id_new",f.row_number().over(Window.orderBy("term_id")))
|
spark.stop()
|
||||||
tfidf = tfidf.join(term_ids,'term_id')
|
|
||||||
|
|
||||||
# step 1 make an rdd of entires
|
|
||||||
# sorted by (dense) spark subreddit id
|
|
||||||
entries = tfidf.select(f.col("term_id_new")-1,f.col("subreddit_id_new")-1,"tf_idf").rdd
|
|
||||||
|
|
||||||
# step 2 make it into a distributed.RowMatrix
|
|
||||||
coordMat = CoordinateMatrix(entries)
|
|
||||||
|
|
||||||
# this needs to be an IndexedRowMatrix()
|
|
||||||
mat = coordMat.toRowMatrix()
|
|
||||||
|
|
||||||
#goal: build a matrix of subreddit columns and tf-idfs rows
|
|
||||||
sim_dist = mat.columnSimilarities(threshold=similarity_threshold)
|
|
||||||
|
|
||||||
print(sim_dist.numRows(), sim_dist.numCols())
|
|
||||||
|
|
||||||
#instead of toLocalMatrix() why not read as entries and put strait into numpy
|
#instead of toLocalMatrix() why not read as entries and put strait into numpy
|
||||||
sim_entries = sim_dist.entries.collect()
|
sim_entries = pd.read_parquet(output_parquet)
|
||||||
|
|
||||||
sim_entries = pd.DataFrame([{'i':me.i,'j':me.j,'value':me.value} for me in sim_entries])
|
|
||||||
|
|
||||||
df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
|
df = tfidf.select('subreddit','subreddit_id_new').distinct().toPandas()
|
||||||
|
df['subreddit_id_new'] = df['subreddit_id_new'] - 1
|
||||||
df = df.sort_values('subreddit_id_new').reset_index(drop=True)
|
df = df.sort_values('subreddit_id_new').reset_index(drop=True)
|
||||||
|
|
||||||
df = df.set_index('subreddit_id_new')
|
df = df.set_index('subreddit_id_new')
|
||||||
|
|
||||||
similarities = sim_entries.join(df, on='i')
|
similarities = sim_entries.join(df, on='i')
|
||||||
similarities = sim_entries.rename(columns={'subreddit':"subreddit_i"})
|
similarities = similarities.rename(columns={'subreddit':"subreddit_i"})
|
||||||
similarities = sim_entries.join(df, on='j')
|
similarities = similarities.join(df, on='j')
|
||||||
similarities = sim_entries.rename(columns={'subreddit':"subreddit_j"})
|
similarities = similarities.rename(columns={'subreddit':"subreddit_j"})
|
||||||
|
|
||||||
p = Path(outfile)
|
similarities.write_feather(output_feather)
|
||||||
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
|
similarities.write_csv(output_csv)
|
||||||
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
|
||||||
|
|
||||||
pyarrow.write_feather(similarities,output_feather)
|
|
||||||
pyarrow.write_csv(similarities,output_csv)
|
|
||||||
return similarities
|
return similarities
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
fire.Fire(spark_similarities)
|
fire.Fire(term_cosine_similarities)
|
||||||
|
Loading…
Reference in New Issue
Block a user