13
0

Build comments dataset similarly to submissions and improve partitioning scheme

This commit is contained in:
Nate E TeBlunthuis 2020-07-07 11:45:43 -07:00
parent fc6575a287
commit 40d4563770
8 changed files with 208 additions and 220 deletions

View File

@ -1,139 +0,0 @@
#!/usr/bin/env python3
import pyspark
from pyspark.sql import functions as f
from pyspark.sql.types import *
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession, SQLContext
conf = SparkConf().setAppName("Reddit comments to parquet")
conf = conf.set('spark.sql.crossJoin.enabled',"true")
spark = SparkSession.builder.getOrCreate()
sc = spark.sparkContext
globstr = "/gscratch/comdata/raw_data/reddit_dumps/comments/RC_20*.bz2"
import re
import glob
import json
from subprocess import Popen, PIPE
from datetime import datetime
import pandas as pd
from multiprocessing import Pool
def open_fileset(globstr):
files = glob.glob(globstr)
for fh in files:
print(fh)
lines = open_input_file(fh)
for line in lines:
yield json.loads(line)
def open_input_file(input_filename):
if re.match(r'.*\.7z$', input_filename):
cmd = ["7za", "x", "-so", input_filename, '*']
elif re.match(r'.*\.gz$', input_filename):
cmd = ["zcat", input_filename]
elif re.match(r'.*\.bz2$', input_filename):
cmd = ["bzcat", "-dk", input_filename]
elif re.match(r'.*\.bz', input_filename):
cmd = ["bzcat", "-dk", input_filename]
elif re.match(r'.*\.xz', input_filename):
cmd = ["xzcat",'-dk',input_filename]
try:
input_file = Popen(cmd, stdout=PIPE).stdout
except NameError:
input_file = open(input_filename, 'r')
return input_file
def include_row(comment, subreddits_to_track = []):
subreddit = comment['subreddit'].lower()
return subreddit in subreddits_to_track
def parse_comment(comment, names= None):
if names is None:
names = ["id","subreddit","link_id","parent_id","created_utc","author","ups","downs","score","edited","subreddit_type","subreddit_id","stickied","is_submitter","body","error"]
try:
comment = json.loads(comment)
except json.decoder.JSONDecodeError as e:
print(e)
print(comment)
row = [None for _ in names]
row[-1] = "json.decoder.JSONDecodeError|{0}|{1}".format(e,comment)
return tuple(row)
row = []
for name in names:
if name == 'created_utc':
row.append(datetime.fromtimestamp(int(comment['created_utc']),tz=None))
elif name == 'edited':
val = comment[name]
if type(val) == bool:
row.append(val)
row.append(None)
else:
row.append(True)
row.append(datetime.fromtimestamp(int(val),tz=None))
elif name == "time_edited":
continue
elif name not in comment:
row.append(None)
else:
row.append(comment[name])
return tuple(row)
# conf = sc._conf.setAll([('spark.executor.memory', '20g'), ('spark.app.name', 'extract_reddit_timeline'), ('spark.executor.cores', '26'), ('spark.cores.max', '26'), ('spark.driver.memory','84g'),('spark.driver.maxResultSize','0'),('spark.local.dir','/gscratch/comdata/spark_tmp')])
sqlContext = pyspark.SQLContext(sc)
comments = sc.textFile(globstr)
schema = StructType().add("id", StringType(), True)
schema = schema.add("subreddit", StringType(), True)
schema = schema.add("link_id", StringType(), True)
schema = schema.add("parent_id", StringType(), True)
schema = schema.add("created_utc", TimestampType(), True)
schema = schema.add("author", StringType(), True)
schema = schema.add("ups", LongType(), True)
schema = schema.add("downs", LongType(), True)
schema = schema.add("score", LongType(), True)
schema = schema.add("edited", BooleanType(), True)
schema = schema.add("time_edited", TimestampType(), True)
schema = schema.add("subreddit_type", StringType(), True)
schema = schema.add("subreddit_id", StringType(), True)
schema = schema.add("stickied", BooleanType(), True)
schema = schema.add("is_submitter", BooleanType(), True)
schema = schema.add("body", StringType(), True)
schema = schema.add("error", StringType(), True)
rows = comments.map(lambda c: parse_comment(c, schema.fieldNames()))
#!/usr/bin/env python3
df = sqlContext.createDataFrame(rows, schema)
df = df.withColumn("subreddit_2", f.lower(f.col('subreddit')))
df = df.drop('subreddit')
df = df.withColumnRenamed('subreddit_2','subreddit')
df = df.withColumnRenamed("created_utc","CreatedAt")
df = df.withColumn("Month",f.month(f.col("CreatedAt")))
df = df.withColumn("Year",f.year(f.col("CreatedAt")))
df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt")))
df = df.withColumn("subreddit_hash",f.sha2(f.col("subreddit"), 256)[0:3])
# cache so we don't have to extract everythin twice
df = df.cache()
df2 = df.sort(["subreddit","author","link_id","parent_id","Year","Month","Day"],ascending=True)
df2.write.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet", partitionBy=["Year",'Month'],mode='overwrite')
df3 = df.sort(["author","CreatetdAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
df3.write.parquet("/gscratch/comdata/output/reddit_comments_by_author.parquet", partitionBy=["Year",'Month'],mode='overwrite')

9
comments_2_parquet.sh Executable file
View File

@ -0,0 +1,9 @@
#!/usr/bin/env bash
echo "!#/usr/bin/bash" > job_script.sh
echo "source $(pwd)/../bin/activate" >> job_script.sh
echo "python3 $(pwd)/comments_2_parquet_part1.py" >> job_script.sh
srun -p comdata -A comdata --nodes=1 --mem=120G --time=48:00:00 job_script.sh
start_spark_and_run.sh 1 $(pwd)/comments_2_parquet_part2.py

92
comments_2_parquet_part1.py Executable file
View File

@ -0,0 +1,92 @@
#!/usr/bin/env python3
import json
from datetime import datetime
from multiprocessing import Pool
from itertools import islice
from helper import find_dumps, open_fileset
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
globstr_base = "/gscratch/comdata/reddit_dumps/comments/RC_20*"
def parse_comment(comment, names= None):
if names is None:
names = ["id","subreddit","link_id","parent_id","created_utc","author","ups","downs","score","edited","subreddit_type","subreddit_id","stickied","is_submitter","body","error"]
try:
comment = json.loads(comment)
except json.decoder.JSONDecodeError as e:
print(e)
print(comment)
row = [None for _ in names]
row[-1] = "json.decoder.JSONDecodeError|{0}|{1}".format(e,comment)
return tuple(row)
row = []
for name in names:
if name == 'created_utc':
row.append(datetime.fromtimestamp(int(comment['created_utc']),tz=None))
elif name == 'edited':
val = comment[name]
if type(val) == bool:
row.append(val)
row.append(None)
else:
row.append(True)
row.append(datetime.fromtimestamp(int(val),tz=None))
elif name == "time_edited":
continue
elif name not in comment:
row.append(None)
else:
row.append(comment[name])
return tuple(row)
# conf = sc._conf.setAll([('spark.executor.memory', '20g'), ('spark.app.name', 'extract_reddit_timeline'), ('spark.executor.cores', '26'), ('spark.cores.max', '26'), ('spark.driver.memory','84g'),('spark.driver.maxResultSize','0'),('spark.local.dir','/gscratch/comdata/spark_tmp')])
dumpdir = "/gscratch/comdata/raw_data/reddit_dumps/comments"
files = list(find_dumps(dumpdir, base_pattern="RC_20*.*"))
pool = Pool(28)
stream = open_fileset(files)
N = 100000
rows = pool.imap_unordered(parse_comment, stream, chunksize=int(N/28))
schema = pa.schema([
pa.field('id', pa.string(), nullable=True),
pa.field('subreddit', pa.string(), nullable=True),
pa.field('link_id', pa.string(), nullable=True),
pa.field('parent_id', pa.string(), nullable=True),
pa.field('created_utc', pa.timestamp('ms'), nullable=True),
pa.field('author', pa.string(), nullable=True),
pa.field('ups', pa.int64(), nullable=True),
pa.field('downs', pa.int64(), nullable=True),
pa.field('score', pa.int64(), nullable=True),
pa.field('edited', pa.bool_(), nullable=True),
pa.field('time_edited', pa.timestamp('ms'), nullable=True),
pa.field('subreddit_type', pa.string(), nullable=True),
pa.field('subreddit_id', pa.string(), nullable=True),
pa.field('stickied', pa.bool_(), nullable=True),
pa.field('is_submitter', pa.bool_(), nullable=True),
pa.field('body', pa.string(), nullable=True),
pa.field('error', pa.string(), nullable=True),
])
with pq.ParquetWriter("/gscratch/comdata/output/reddit_comments.parquet_temp",schema=schema,compression='snappy',flavor='spark') as writer:
while True:
chunk = islice(rows,N)
pddf = pd.DataFrame(chunk, columns=schema.names)
table = pa.Table.from_pandas(pddf,schema=schema)
if table.shape[0] == 0:
break
writer.write_table(table)
writer.close()

29
comments_2_parquet_part2.py Executable file
View File

@ -0,0 +1,29 @@
#!/usr/bin/env python3
# spark script to make sorted, and partitioned parquet files
from pyspark.sql import functions as f
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
df = spark.read.parquet("/gscratch/comdata/output/reddit_comments.parquet_temp2")
df = df.withColumn("subreddit_2", f.lower(f.col('subreddit')))
df = df.drop('subreddit')
df = df.withColumnRenamed('subreddit_2','subreddit')
df = df.withColumnRenamed("created_utc","CreatedAt")
df = df.withColumn("Month",f.month(f.col("CreatedAt")))
df = df.withColumn("Year",f.year(f.col("CreatedAt")))
df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt")))
df = df.repartition('subreddit')
df2 = df.sort(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True)
df2 = df2.sortWithinPartitions(["subreddit","CreatedAt","link_id","parent_id","Year","Month","Day"],ascending=True)
df2.write.parquet("/gscratch/comdata/output/reddit_comments_by_subreddit.parquet", mode='overwrite', compression='snappy')
df = df.repartition('author')
df3 = df.sort(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
df3 = df3.sortWithinPartitions(["author","CreatedAt","subreddit","link_id","parent_id","Year","Month","Day"],ascending=True)
df3.write.parquet("/gscratch/comdata/output/reddit_comments_by_author.parquet", mode='overwrite')

57
helper.py Normal file
View File

@ -0,0 +1,57 @@
from subprocess import Popen, PIPE
import re
from collections import defaultdict
from os import path
import glob
def find_dumps(dumpdir, base_pattern):
files = glob.glob(path.join(dumpdir,base_pattern))
# build a dictionary of possible extensions for each dump
dumpext = defaultdict(list)
for fpath in files:
fname, ext = path.splitext(fpath)
dumpext[fname].append(ext)
ext_priority = ['.zst','.xz','.bz2']
for base, exts in dumpext.items():
found = False
if len(exts) == 1:
yield base + exts[0]
found = True
else:
for ext in ext_priority:
if ext in exts:
yield base + ext
found = True
assert(found == True)
def open_fileset(files):
for fh in files:
print(fh)
lines = open_input_file(fh)
for line in lines:
yield line
def open_input_file(input_filename):
if re.match(r'.*\.7z$', input_filename):
cmd = ["7za", "x", "-so", input_filename, '*']
elif re.match(r'.*\.gz$', input_filename):
cmd = ["zcat", input_filename]
elif re.match(r'.*\.bz2$', input_filename):
cmd = ["bzcat", "-dk", input_filename]
elif re.match(r'.*\.bz', input_filename):
cmd = ["bzcat", "-dk", input_filename]
elif re.match(r'.*\.xz', input_filename):
cmd = ["xzcat",'-dk', '-T 20',input_filename]
elif re.match(r'.*\.zst',input_filename):
cmd = ['zstd','-dck', input_filename]
try:
input_file = Popen(cmd, stdout=PIPE).stdout
except NameError as e:
print(e)
input_file = open(input_filename, 'r')
return input_file

View File

@ -1,8 +1,10 @@
#!/usr/bin/env bash
# part2 should be run on one ore more spark nodes
echo "!#/usr/bin/bash" > job_script.sh
echo "source $(pwd)/../bin/activate" >> job_script.sh
echo "python3 $(pwd)/submissions_2_parquet_part1.py" >> job_script.sh
./submissions_2_parquet_part1.py
srun -p comdata -A comdata --nodes=1 --mem=120G --time=48:00:00 job_script.sh
start_spark_and_run.sh 1 $(pwd)/submissions_2_parquet_part2.py

View File

@ -4,75 +4,14 @@
# 1. from gz to arrow parquet (this script)
# 2. from arrow parquet to spark parquet (submissions_2_parquet_part2.py)
from collections import defaultdict
from os import path
import glob
import json
import re
from datetime import datetime
from subprocess import Popen, PIPE
from multiprocessing import Pool, SimpleQueue
dumpdir = "/gscratch/comdata/raw_data/reddit_dumps/submissions"
def find_json_files(dumpdir):
base_pattern = "RS_20*.*"
files = glob.glob(path.join(dumpdir,base_pattern))
# build a dictionary of possible extensions for each dump
dumpext = defaultdict(list)
for fpath in files:
fname, ext = path.splitext(fpath)
dumpext[fname].append(ext)
ext_priority = ['.zst','.xz','.bz2']
for base, exts in dumpext.items():
found = False
if len(exts) == 1:
yield base + exts[0]
found = True
else:
for ext in ext_priority:
if ext in exts:
yield base + ext
found = True
assert(found == True)
files = list(find_json_files(dumpdir))
def read_file(fh):
lines = open_input_file(fh)
for line in lines:
yield line
def open_fileset(files):
for fh in files:
print(fh)
lines = open_input_file(fh)
for line in lines:
yield line
def open_input_file(input_filename):
if re.match(r'.*\.7z$', input_filename):
cmd = ["7za", "x", "-so", input_filename, '*']
elif re.match(r'.*\.gz$', input_filename):
cmd = ["zcat", input_filename]
elif re.match(r'.*\.bz2$', input_filename):
cmd = ["bzcat", "-dk", input_filename]
elif re.match(r'.*\.bz', input_filename):
cmd = ["bzcat", "-dk", input_filename]
elif re.match(r'.*\.xz', input_filename):
cmd = ["xzcat",'-dk', '-T 20',input_filename]
elif re.match(r'.*\.zst',input_filename):
cmd = ['zstd','-dck', input_filename]
try:
input_file = Popen(cmd, stdout=PIPE).stdout
except NameError as e:
print(e)
input_file = open(input_filename, 'r')
return input_file
from multiprocessing import Pool
from itertools import islice
from helper import find_dumps, open_fileset
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
def parse_submission(post, names = None):
@ -116,6 +55,10 @@ def parse_submission(post, names = None):
row.append(post[name])
return tuple(row)
dumpdir = "/gscratch/comdata/raw_data/reddit_dumps/submissions"
files = list(find_dumps(dumpdir))
pool = Pool(28)
stream = open_fileset(files)
@ -124,11 +67,6 @@ N = 100000
rows = pool.imap_unordered(parse_submission, stream, chunksize=int(N/28))
from itertools import islice
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
schema = pa.schema([
pa.field('id', pa.string(),nullable=True),
pa.field('author', pa.string(),nullable=True),

View File

@ -2,12 +2,8 @@
# spark script to make sorted, and partitioned parquet files
import pyspark
from pyspark.sql import functions as f
from pyspark.sql.types import *
from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession, SQLContext
import os
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
@ -31,12 +27,16 @@ df = df.withColumn("Day",f.dayofmonth(f.col("CreatedAt")))
df = df.withColumn("subreddit_hash",f.sha2(f.col("subreddit"), 256)[0:3])
# next we gotta resort it all.
df2 = df.sort(["subreddit","author","id","Year","Month","Day"],ascending=True)
df = df.repartition("subreddit")
df2 = df.sort(["subreddit","CreatedAt","id"],ascending=True)
df2 = df.sortWithinPartitions(["subreddit","CreatedAt","id"],ascending=True)
df2.write.parquet("/gscratch/comdata/output/reddit_submissions_by_subreddit.parquet", partitionBy=["Year",'Month'], mode='overwrite')
# # we also want to have parquet files sorted by author then reddit.
df3 = df.sort(["author","CreatedAt","subreddit","id","Year","Month","Day"],ascending=True)
df = df.repartition("author")
df3 = df.sort(["author","CreatedAt","id"],ascending=True)
df3 = df.sortWithinPartitions(["author","CreatedAt","id"],ascending=True)
df3.write.parquet("/gscratch/comdata/output/reddit_submissions_by_author.parquet", partitionBy=["Year",'Month'], mode='overwrite')
os.remove("/gscratch/comdata/output/reddit_submissions.parquet_temp")