split fitting and plotting tsne.
This commit is contained in:
parent
db53c0138a
commit
4447c60265
35
fit_tsne.py
Normal file
35
fit_tsne.py
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
import pyarrow
|
||||||
|
import pandas as pd
|
||||||
|
from numpy import random
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.manifold import TSNE
|
||||||
|
|
||||||
|
df = pd.read_feather("reddit_term_similarity_3000.feather")
|
||||||
|
df = df.sort_values(['i','j'])
|
||||||
|
|
||||||
|
n = max(df.i.max(),df.j.max())
|
||||||
|
|
||||||
|
def zero_pad(grp):
|
||||||
|
p = grp.shape[0]
|
||||||
|
grp = grp.sort_values('j')
|
||||||
|
return np.concatenate([np.zeros(n-p),np.ones(1),np.array(grp.value)])
|
||||||
|
|
||||||
|
col_names = df.sort_values('j').loc[:,['subreddit_j']].drop_duplicates()
|
||||||
|
first_name = list(set(df.subreddit_i) - set(df.subreddit_j))[0]
|
||||||
|
col_names = [first_name] + list(col_names.subreddit_j)
|
||||||
|
mat = df.groupby('i').apply(zero_pad)
|
||||||
|
mat.loc[n] = np.concatenate([np.zeros(n),np.ones(1)])
|
||||||
|
mat = np.stack(mat)
|
||||||
|
|
||||||
|
mat = mat + np.tril(mat.transpose(),k=-1)
|
||||||
|
dist = 2*np.arccos(mat)/np.pi
|
||||||
|
|
||||||
|
tsne_model = TSNE(2,learning_rate=200,perplexity=40,n_iter=5000,metric='precomputed')
|
||||||
|
|
||||||
|
tsne_fit_model = tsne_model.fit(dist)
|
||||||
|
|
||||||
|
tsne_fit_whole = tsne_fit_model.fit_transform(mat)
|
||||||
|
|
||||||
|
plot_data = pd.DataFrame({'x':tsne_fit_whole[:,0],'y':tsne_fit_whole[:,1], 'subreddit':col_names})
|
||||||
|
|
||||||
|
plot_data.to_feather("tsne_subreddit_fit.feather")
|
1
tsne_subreddit_fit.feather
Symbolic link
1
tsne_subreddit_fit.feather
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
.git/annex/objects/1M/PF/SHA256E-s60874--5fe93033b4fcac562cb235e85134d2bd330a0aecd6d0afc151f9b9c028b0ebe5/SHA256E-s60874--5fe93033b4fcac562cb235e85134d2bd330a0aecd6d0afc151f9b9c028b0ebe5
|
@ -7,33 +7,7 @@ from numpy import random
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from sklearn.manifold import TSNE
|
from sklearn.manifold import TSNE
|
||||||
|
|
||||||
df = pd.read_csv("reddit_term_similarity_3000.csv")
|
pd.read_feather("tsne_subreddit_fit.feather")
|
||||||
df = df.sort_values(['i','j'])
|
|
||||||
|
|
||||||
n = max(df.i.max(),df.j.max())
|
|
||||||
|
|
||||||
def zero_pad(grp):
|
|
||||||
p = grp.shape[0]
|
|
||||||
grp = grp.sort_values('j')
|
|
||||||
return np.concatenate([np.zeros(n-p),np.zeros(1),np.array(grp.value)])
|
|
||||||
|
|
||||||
col_names = df.sort_values('j').loc[:,['subreddit_j']].drop_duplicates()
|
|
||||||
first_name = list(set(df.subreddit_i) - set(df.subreddit_j))[0]
|
|
||||||
col_names = [first_name] + list(col_names.subreddit_j)
|
|
||||||
mat = df.groupby('i').apply(zero_pad)
|
|
||||||
mat.loc[n] = np.concatenate([np.zeros(n),np.ones(1)])
|
|
||||||
mat = np.stack(mat)
|
|
||||||
|
|
||||||
# plot the matrix using the first and second eigenvalues
|
|
||||||
mat = mat + np.tril(mat.transpose(),k=-1)
|
|
||||||
|
|
||||||
tsne_model = TSNE(2,learning_rate=500,perplexity=40,n_iter=2000)
|
|
||||||
tsne_fit_model = tsne_model.fit(mat)
|
|
||||||
tsne_fit_whole = tsne_fit_model.fit_transform(mat)
|
|
||||||
|
|
||||||
plot_data = pd.DataFrame({'x':tsne_fit_whole[:,0],'y':tsne_fit_whole[:,1], 'subreddit':col_names})
|
|
||||||
|
|
||||||
plot_data.to_feather("tsne_subreddit_fit.feather")
|
|
||||||
|
|
||||||
slider = alt.binding_range(min=1,max=100,step=1,name='zoom: ')
|
slider = alt.binding_range(min=1,max=100,step=1,name='zoom: ')
|
||||||
selector = alt.selection_single(name='zoomselect',fields=['zoom'],bind='scales',init={'zoom':1})
|
selector = alt.selection_single(name='zoomselect',fields=['zoom'],bind='scales',init={'zoom':1})
|
||||||
|
Loading…
Reference in New Issue
Block a user