15
0

Changes from hyak.

This commit is contained in:
Nate E TeBlunthuis 2021-02-22 16:03:48 -08:00
parent 140d1bdd17
commit 4dc949de5f
14 changed files with 128 additions and 55 deletions

View File

@ -1,10 +1,32 @@
#srun_cdsc='srun -p comdata-int -A comdata --time=300:00:00 --time-min=00:15:00 --mem=100G --ntasks=1 --cpus-per-task=28' #srun_cdsc='srun -p comdata-int -A comdata --time=300:00:00 --time-min=00:15:00 --mem=100G --ntasks=1 --cpus-per-task=28'
all:/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather all:/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather /gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather /gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather /gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather
#all:/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather /gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather /gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather /gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather /gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather
/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
# $srun_cdsc python3 # $srun_cdsc python3
./clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.85 --damping=0.85 start_spark_and_run.sh 1 clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.85 --damping=0.85
/gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather /gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather
# $srun_cdsc python3 # $srun_cdsc python3
./clustering.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather /gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather ---max_iter=1000 --convergence_iter=15 --preference_quantile=0.9 --damping=0.5 start_spark_and_run.sh 1 clustering.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather /gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather ---max_iter=1000 --convergence_iter=15 --preference_quantile=0.9 --damping=0.5
/gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet
# $srun_cdsc
start_spark_and_run.sh 1 clustering.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet /gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.5 --damping=0.85
# it's pretty difficult to get a result that isn't one huge megacluster. A sign that it's bullcrap
# /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather
# ./clustering.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather /gscratch/comdata/output/reddit_clustering/wang_similarity_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.9 --damping=0.85
/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet
start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet --output=/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather
# /gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather:fit_tsne.py /gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather
# python3 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather --output=/gscratch/comdata/output/reddit_tsne/wang_similarity_10000.feather
/gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
# $srun_cdsc python3
start_spark_and_run.sh 1 fit_tsne.py --similarities=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather --output=/gscratch/comdata/output/reddit_tsne/comment_authors_10000.feather

View File

@ -5,7 +5,7 @@ from numpy import random
import numpy as np import numpy as np
from sklearn.manifold import TSNE from sklearn.manifold import TSNE
similarities = "term_similarities_10000.feather" similarities = "/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet"
def fit_tsne(similarities, output, learning_rate=750, perplexity=50, n_iter=10000, early_exaggeration=20): def fit_tsne(similarities, output, learning_rate=750, perplexity=50, n_iter=10000, early_exaggeration=20):
''' '''

View File

@ -1,7 +1,10 @@
all: /gscratch/comdata/output/reddit_density/comment_terms_10000.feather /gscratch/comdata/output/reddit_density/comment_authors_10000.feather all: /gscratch/comdata/output/reddit_density/comment_terms_10000.feather /gscratch/comdata/output/reddit_density/comment_authors_10000.feather /gscratch/comdata/output/reddit_density/subreddit_author_tf_similarities_10000.feather
/gscratch/comdata/output/reddit_density/comment_terms_10000.feather:overlap_density.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather /gscratch/comdata/output/reddit_density/comment_terms_10000.feather:overlap_density.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather
python3 overlap_density.py terms --inpath="/gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather" --outpath="/gscratch/comdata/output/reddit_density/comment_terms_10000.feather" --agg=pd.DataFrame.sum start_spark_and_run.sh 1 overlap_density.py terms --inpath="/gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather" --outpath="/gscratch/comdata/output/reddit_density/comment_terms_10000.feather" --agg=pd.DataFrame.sum
/gscratch/comdata/output/reddit_density/comment_authors_10000.feather:overlap_density.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather /gscratch/comdata/output/reddit_density/comment_authors_10000.feather:overlap_density.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
python3 overlap_density.py authors --inpath="/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather" --outpath="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather" --agg=pd.DataFrame.sum start_spark_and_run.sh 1 overlap_density.py authors --inpath="/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather" --outpath="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather" --agg=pd.DataFrame.sum
/gscratch/comdata/output/reddit_density/subreddit_author_tf_similarities_10000.feather: overlap_density.py /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet
start_spark_and_run.sh 1 overlap_density.py authors --inpath="/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet" --outpath="/gscratch/comdata/output/reddit_density/subreddit_author_tf_similarities_10000.feather" --agg=pd.DataFrame.sum

View File

@ -1,4 +1,4 @@
#!/usr/bin/bash #!/usr/bin/bash
start_spark_cluster.sh start_spark_cluster.sh
spark-submit --master spark://$(hostname):18899 overlap_density.py wang_overlaps --inpath=/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet --to_date=2020-04-13 spark-submit --master spark://$(hostname):18899 overlap_density.py authors --inpath=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather --outpath=/gscratch/comdata/output/reddit_density/comment_authors_10000.feather --agg=pd.DataFrame.sum
stop-all.sh stop-all.sh

View File

@ -5,7 +5,7 @@ import numpy as np
import sys import sys
sys.path.append("..") sys.path.append("..")
sys.path.append("../similarities") sys.path.append("../similarities")
from similarities.similarities_helper import read_tfidf_matrix, reindex_tfidf, reindex_tfidf_time_interval from similarities.similarities_helper import reindex_tfidf, reindex_tfidf_time_interval
# this is the mean of the ratio of the overlap to the focal size. # this is the mean of the ratio of the overlap to the focal size.
# mean shared membership per focal community member # mean shared membership per focal community member
@ -72,5 +72,5 @@ if __name__ == "__main__":
fire.Fire({'authors':author_overlap_density, fire.Fire({'authors':author_overlap_density,
'terms':term_overlap_density, 'terms':term_overlap_density,
'author_weekly':author_overlap_density_weekly, 'author_weekly':author_overlap_density_weekly,
'term_weekly':term_overlap_density_weekly, 'term_weekly':term_overlap_density_weekly})
'wang_overlaps':wang_overlap_density})

View File

@ -1,13 +1,25 @@
all: /gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_25000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_25000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet /gscratch/comdata/output/reddit_similarity/comment_terms_10000_weekly.parquet all: /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet /gscratch/comdata/output/reddit_similarity/comment_terms.parquet
/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_25000.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet # all: /gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_25000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_25000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet /gscratch/comdata/output/reddit_similarity/comment_terms_10000_weekly.parquet
start_spark_and_run.sh 1 cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_25000.feather
/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_25000.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet
start_spark_and_run.sh 1 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_25000.feather
/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet # /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_25000.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet
start_spark_and_run.sh 1 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.feather # start_spark_and_run.sh 1 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_25000.feather
/gscratch/comdata/output/reddit_similarity/comment_terms_10000_weekly.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet /gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet: tfidf.py similarities_helper.py /gscratch/comdata/output/reddit_ngrams/comment_terms.parquet /gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments.csv
start_spark_and_run.sh 1 weekly_cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10000_weely.parquet start_spark_and_run.sh 1 tfidf.py terms --topN=10000
/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet: tfidf.py similarities_helper.py /gscratch/comdata/output/reddit_ngrams/comment_authors.parquet /gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments.csv
start_spark_and_run.sh 1 tfidf.py authors --topN=10000
/gscratch/comdata/output/reddit_similarity/comment_authors_10000.parquet: cosine_similarities.py similarities_helper.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet
start_spark_and_run.sh 1 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
/gscratch/comdata/output/reddit_similarity/comment_terms.parquet: cosine_similarities.py similarities_helper.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet
start_spark_and_run.sh 1 cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather
# /gscratch/comdata/output/reddit_similarity/comment_terms_10000_weekly.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet
# start_spark_and_run.sh 1 weekly_cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10000_weely.parquet
/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet: cosine_similarities.py similarities_helper.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet
start_spark_and_run.sh 1 cosine_similarities.py author-tf --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_author_tf_similarities_10000.parquet

View File

@ -1,30 +1,53 @@
import pandas as pd import pandas as pd
import fire import fire
from pathlib import Path from pathlib import Path
from similarities_helper import similarities from similarities_helper import similarities, column_similarities
def cosine_similarities(infile, term_colname, outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False,from_date=None, to_date=None): def cosine_similarities(infile, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None, tfidf_colname='tf_idf'):
return similiarities(infile=infile, simfunc=column_similarities, term_colname=term_colname, outfile=outfile, min_df=min_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=exclude_phrases,from_date=from_date, to_date=to_date)
def term_cosine_similarities(outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None): return similarities(infile=infile, simfunc=column_similarities, term_colname=term_colname, outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=exclude_phrases,from_date=from_date, to_date=to_date, tfidf_colname=tfidf_colname)
def term_cosine_similarities(outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet', return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet',
'term', 'term',
outfile, outfile,
min_df, min_df,
max_df,
included_subreddits, included_subreddits,
topN, topN,
exclude_phrasesby.) exclude_phrases,
from_date,
to_date)
def author_cosine_similarities(outfile, min_df=2, included_subreddits=None, topN=10000, from_date=None, to_date=None): def author_cosine_similarities(outfile, min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None):
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet', return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
'author', 'author',
outfile, outfile,
min_df, min_df,
max_df,
included_subreddits, included_subreddits,
topN, topN,
exclude_phrases=False) exclude_phrases=False,
from_date=from_date,
to_date=to_date)
def author_tf_similarities(outfile, min_df=2, max_df=None, included_subreddits=None, topN=10000, from_date=None, to_date=None):
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
'author',
outfile,
min_df,
max_df,
included_subreddits,
topN,
exclude_phrases=False,
from_date=from_date,
to_date=to_date,
tfidf_colname='relative_tf')
if __name__ == "__main__": if __name__ == "__main__":
fire.Fire({'term':term_cosine_similarities, fire.Fire({'term':term_cosine_similarities,
'author':author_cosine_similarities}) 'author':author_cosine_similarities,
'author-tf':author_tf_similarities})

View File

@ -1,4 +1,4 @@
#!/usr/bin/bash #!/usr/bin/bash
start_spark_cluster.sh start_spark_cluster.sh
spark-submit --master spark://$(hostname):18899 wang_similarity.py --infile=/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet --max_df=10 --outfile=/gscratch/comdata/output/reddit_similarity/wang_similarity_1000_max10.feather spark-submit --master spark://$(hostname):18899 cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather
stop-all.sh stop-all.sh

View File

@ -75,17 +75,20 @@ def reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subre
spark.stop() spark.stop()
return (tempdir, subreddit_names) return (tempdir, subreddit_names)
def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None, tfidf_colname='tf_idf'):
'''
tfidf_colname: set to 'relative_tf' to use normalized term frequency instead of tf-idf, which can be useful for author-based similarities.
'''
if from_date is not None or to_date is not None: if from_date is not None or to_date is not None:
tempdir, subreddit_names = reindex_tfidf_time_interval(infile, term_colname='author', min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False, from_date=from_date, to_date=to_date) tempdir, subreddit_names = reindex_tfidf_time_interval(infile, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False, from_date=from_date, to_date=to_date)
else: else:
tempdir, subreddit_names = reindex_tfidf(infile, term_colname='author', min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False) tempdir, subreddit_names = reindex_tfidf(infile, term_colname=term_colname, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False)
print("loading matrix") print("loading matrix")
# mat = read_tfidf_matrix("term_tfidf_entries7ejhvnvl.parquet", term_colname) # mat = read_tfidf_matrix("term_tfidf_entries7ejhvnvl.parquet", term_colname)
mat = read_tfidf_matrix(tempdir.name, term_colname) mat = read_tfidf_matrix(tempdir.name, term_colname, tfidf_colname)
print('computing similarities') print('computing similarities')
sims = simfunc(mat) sims = simfunc(mat)
del mat del mat
@ -108,14 +111,24 @@ def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=Non
sims.to_feather(outfile) sims.to_feather(outfile)
tempdir.cleanup() tempdir.cleanup()
def read_tfidf_matrix_weekly(path, term_colname, week): def read_tfidf_matrix_weekly(path, term_colname, week, tfidf_colname='tf_idf'):
term = term_colname term = term_colname
term_id = term + '_id' term_id = term + '_id'
term_id_new = term + '_id_new' term_id_new = term + '_id_new'
dataset = ds.dataset(path,format='parquet') dataset = ds.dataset(path,format='parquet')
entries = dataset.to_table(columns=['tf_idf','subreddit_id_new',term_id_new],filter=ds.field('week')==week).to_pandas() entries = dataset.to_table(columns=[tfidf_colname,'subreddit_id_new', term_id_new],filter=ds.field('week')==week).to_pandas()
return(csr_matrix((entries.tf_idf,(entries[term_id_new]-1, entries.subreddit_id_new-1)))) return(csr_matrix((entries[tfidf_colname], (entries[term_id_new]-1, entries.subreddit_id_new-1))))
def read_tfidf_matrix(path, term_colname, tfidf_colname='tf_idf'):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
dataset = ds.dataset(path,format='parquet')
print(f"tfidf_colname:{tfidf_colname}")
entries = dataset.to_table(columns=[tfidf_colname, 'subreddit_id_new',term_id_new]).to_pandas()
return(csr_matrix((entries[tfidf_colname],(entries[term_id_new]-1, entries.subreddit_id_new-1))))
def write_weekly_similarities(path, sims, week, names): def write_weekly_similarities(path, sims, week, names):
sims['week'] = week sims['week'] = week
@ -127,15 +140,6 @@ def write_weekly_similarities(path, sims, week, names):
sims = sims.melt(id_vars=['subreddit','week'],value_vars=names.subreddit.values) sims = sims.melt(id_vars=['subreddit','week'],value_vars=names.subreddit.values)
sims.to_parquet(p / week.isoformat()) sims.to_parquet(p / week.isoformat())
def read_tfidf_matrix(path,term_colname):
term = term_colname
term_id = term + '_id'
term_id_new = term + '_id_new'
dataset = ds.dataset(path,format='parquet')
entries = dataset.to_table(columns=['tf_idf','subreddit_id_new',term_id_new]).to_pandas()
return(csr_matrix((entries.tf_idf,(entries[term_id_new]-1, entries.subreddit_id_new-1))))
def column_overlaps(mat): def column_overlaps(mat):
non_zeros = (mat != 0).astype('double') non_zeros = (mat != 0).astype('double')
@ -383,7 +387,7 @@ def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm
return df return df
def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments.csv"): def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments_nonswf.csv"):
rankdf = pd.read_csv(path) rankdf = pd.read_csv(path)
included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values) included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
return included_subreddits return included_subreddits

View File

@ -58,6 +58,7 @@ def tfidf_authors_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfi
def tfidf_terms_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet', def tfidf_terms_weekly(outpath='/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_terms.parquet',
topN=25000): topN=25000):
return tfidf_weekly("/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet", return tfidf_weekly("/gscratch/comdata/output/reddit_ngrams/comment_terms.parquet",
outpath, outpath,
topN, topN,

View File

@ -12,7 +12,7 @@ infile="/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet
def wang_overlaps(infile, outfile="/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather", min_df=1, max_df=None, included_subreddits=None, topN=10000, exclude_phrases=False, from_date=None, to_date=None): def wang_overlaps(infile, outfile="/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather", min_df=1, max_df=None, included_subreddits=None, topN=10000, exclude_phrases=False, from_date=None, to_date=None):
return similarities(infile=infile, simfunc=wang_similarity, term_colname='author', outfile=outfile, min_df=min_df, max_df=None, included_subreddits=included_subreddits, topN=topN, exclude_phrases=exclude_phrases, from_date=from_date, to_date=to_date) return similarities(infile=infile, simfunc=wang_similarity, term_colname='author', outfile=outfile, min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=exclude_phrases, from_date=from_date, to_date=to_date)
if __name__ == "__main__": if __name__ == "__main__":
fire.Fire(wang_overlaps) fire.Fire(wang_overlaps)

File diff suppressed because one or more lines are too long

View File

@ -14,7 +14,7 @@ def base_plot(plot_data):
cluster_dropdown = alt.binding_select(options=[str(c) for c in sorted(set(plot_data.cluster))]) cluster_dropdown = alt.binding_select(options=[str(c) for c in sorted(set(plot_data.cluster))])
subreddit_dropdown = alt.binding_select(options=sorted(plot_data.subreddit)) # subreddit_dropdown = alt.binding_select(options=sorted(plot_data.subreddit))
cluster_click_select = alt.selection_single(on='click',fields=['cluster'], bind=cluster_dropdown, name=' ') cluster_click_select = alt.selection_single(on='click',fields=['cluster'], bind=cluster_dropdown, name=' ')
# cluster_select = alt.selection_single(fields=['cluster'], bind=cluster_dropdown, name='cluster') # cluster_select = alt.selection_single(fields=['cluster'], bind=cluster_dropdown, name='cluster')
@ -42,7 +42,7 @@ def zoom_plot(plot_data):
chart = base_plot(plot_data) chart = base_plot(plot_data)
chart = chart.interactive() chart = chart.interactive()
chart = chart.properties(width=1275,height=1000) chart = chart.properties(width=1275,height=800)
return chart return chart
@ -139,11 +139,19 @@ def assign_cluster_colors(tsne_data, clusters, n_colors, n_neighbors = 4):
def build_visualization(tsne_data, clusters, output): def build_visualization(tsne_data, clusters, output):
# tsne_data = "/gscratch/comdata/output/reddit_tsne/subreddit_author_tf_similarities_10000.feather"
# clusters = "/gscratch/comdata/output/reddit_clustering/subreddit_author_tf_similarities_10000.feather"
tsne_data = pd.read_feather(tsne_data) tsne_data = pd.read_feather(tsne_data)
clusters = pd.read_feather(clusters) clusters = pd.read_feather(clusters)
tsne_data = assign_cluster_colors(tsne_data,clusters,10,8) tsne_data = assign_cluster_colors(tsne_data,clusters,10,8)
# sr_per_cluster = tsne_data.groupby('cluster').subreddit.count().reset_index()
# sr_per_cluster = sr_per_cluster.rename(columns={'subreddit':'cluster_size'})
tsne_data = tsne_data.merge(sr_per_cluster,on='cluster')
term_zoom_plot = zoom_plot(tsne_data) term_zoom_plot = zoom_plot(tsne_data)
term_zoom_plot.save(output) term_zoom_plot.save(output)