Updating to support wang-style user overlaps.
This commit is contained in:
parent
56269deee3
commit
4e20dce188
@ -1,4 +1,10 @@
|
||||
srun_cdsc='srun -p comdata-int -A comdata --time=300:00:00 --time-min=00:15:00 --mem=100G --ntasks=1 --cpus-per-task=28'
|
||||
affinity/subreddit_comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet
|
||||
#srun_cdsc='srun -p comdata-int -A comdata --time=300:00:00 --time-min=00:15:00 --mem=100G --ntasks=1 --cpus-per-task=28'
|
||||
all:/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather
|
||||
|
||||
/gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather
|
||||
# $srun_cdsc python3
|
||||
clustering.py /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.feather affinity/subreddit_comment_authors_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.85 --damping=0.85
|
||||
./clustering.py /gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather /gscratch/comdata/output/reddit_clustering/comment_authors_10000.feather ---max_iter=400 --convergence_iter=15 --preference_quantile=0.85 --damping=0.85
|
||||
|
||||
/gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather:clustering.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather
|
||||
# $srun_cdsc python3
|
||||
./clustering.py /gscratch/comdata/output/reddit_similarity/comment_terms_10000.feather /gscratch/comdata/output/reddit_clustering/comment_terms_10000.feather ---max_iter=1000 --convergence_iter=15 --preference_quantile=0.9 --damping=0.5
|
||||
|
BIN
clustering/affinity/subreddit_comment_authors_10000_a.feather
Normal file
BIN
clustering/affinity/subreddit_comment_authors_10000_a.feather
Normal file
Binary file not shown.
0
clustering/clustering.py
Normal file → Executable file
0
clustering/clustering.py
Normal file → Executable file
4
density/job_script.sh
Executable file
4
density/job_script.sh
Executable file
@ -0,0 +1,4 @@
|
||||
#!/usr/bin/bash
|
||||
start_spark_cluster.sh
|
||||
spark-submit --master spark://$(hostname):18899 overlap_density.py wang_overlaps --inpath=/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet --to_date=2020-04-13
|
||||
stop-all.sh
|
@ -2,6 +2,14 @@ import pandas as pd
|
||||
from pandas.core.groupby import DataFrameGroupBy as GroupBy
|
||||
import fire
|
||||
import numpy as np
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
sys.path.append("../similarities")
|
||||
from similarities.similarities_helper import read_tfidf_matrix, reindex_tfidf, reindex_tfidf_time_interval
|
||||
|
||||
# this is the mean of the ratio of the overlap to the focal size.
|
||||
# mean shared membership per focal community member
|
||||
# the input is the author tf-idf matrix
|
||||
|
||||
def overlap_density(inpath, outpath, agg = pd.DataFrame.sum):
|
||||
df = pd.read_feather(inpath)
|
||||
@ -20,6 +28,16 @@ def overlap_density_weekly(inpath, outpath, agg = GroupBy.sum):
|
||||
res.to_feather(outpath)
|
||||
return res
|
||||
|
||||
|
||||
# inpath="/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet";
|
||||
# min_df=1;
|
||||
# included_subreddits=None;
|
||||
# topN=10000;
|
||||
# outpath="/gscratch/comdata/output/reddit_density/wang_overlaps_10000.feather"
|
||||
|
||||
# to_date=2019-10-28
|
||||
|
||||
|
||||
def author_overlap_density(inpath="/gscratch/comdata/output/reddit_similarity/comment_authors_10000.feather",
|
||||
outpath="/gscratch/comdata/output/reddit_density/comment_authors_10000.feather", agg=pd.DataFrame.sum):
|
||||
if type(agg) == str:
|
||||
@ -54,4 +72,5 @@ if __name__ == "__main__":
|
||||
fire.Fire({'authors':author_overlap_density,
|
||||
'terms':term_overlap_density,
|
||||
'author_weekly':author_overlap_density_weekly,
|
||||
'term_weekly':term_overlap_density_weekly})
|
||||
'term_weekly':term_overlap_density_weekly,
|
||||
'wang_overlaps':wang_overlap_density})
|
||||
|
@ -1,3 +1,11 @@
|
||||
all: /gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_25000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_25000.parquet /gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet /gscratch/comdata/output/reddit_similarity/comment_terms_10000_weekly.parquet
|
||||
|
||||
/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_25000.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet
|
||||
start_spark_and_run.sh 1 cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_25000.feather
|
||||
|
||||
/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_25000.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet
|
||||
start_spark_and_run.sh 1 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_25000.feather
|
||||
|
||||
/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.parquet: cosine_similarities.py /gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet
|
||||
start_spark_and_run.sh 1 cosine_similarities.py author --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_authors_10000.feather
|
||||
|
||||
|
@ -1,64 +1,21 @@
|
||||
from pyspark.sql import functions as f
|
||||
from pyspark.sql import SparkSession
|
||||
import pandas as pd
|
||||
import fire
|
||||
from pathlib import Path
|
||||
from similarities_helper import prep_tfidf_entries, read_tfidf_matrix, select_topN_subreddits, column_similarities
|
||||
from similarities_helper import similarities
|
||||
|
||||
def cosine_similarities(infile, term_colname, outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False,from_date=None, to_date=None):
|
||||
return similiarities(infile=infile, simfunc=column_similarities, term_colname=term_colname, outfile=outfile, min_df=min_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=exclude_phrases,from_date=from_date, to_date=to_date)
|
||||
|
||||
def cosine_similarities(infile, term_colname, outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
|
||||
spark = SparkSession.builder.getOrCreate()
|
||||
conf = spark.sparkContext.getConf()
|
||||
print(outfile)
|
||||
print(exclude_phrases)
|
||||
|
||||
tfidf = spark.read.parquet(infile)
|
||||
|
||||
if included_subreddits is None:
|
||||
included_subreddits = select_topN_subreddits(topN)
|
||||
else:
|
||||
included_subreddits = set(open(included_subreddits))
|
||||
|
||||
if exclude_phrases == True:
|
||||
tfidf = tfidf.filter(~f.col(term_colname).contains("_"))
|
||||
|
||||
print("creating temporary parquet with matrix indicies")
|
||||
tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, included_subreddits)
|
||||
tfidf = spark.read.parquet(tempdir.name)
|
||||
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
|
||||
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
|
||||
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
|
||||
spark.stop()
|
||||
|
||||
print("loading matrix")
|
||||
mat = read_tfidf_matrix(tempdir.name, term_colname)
|
||||
print('computing similarities')
|
||||
sims = column_similarities(mat)
|
||||
del mat
|
||||
|
||||
sims = pd.DataFrame(sims.todense())
|
||||
sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
|
||||
sims['subreddit'] = subreddit_names.subreddit.values
|
||||
|
||||
p = Path(outfile)
|
||||
|
||||
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
|
||||
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
||||
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
||||
|
||||
sims.to_feather(outfile)
|
||||
tempdir.cleanup()
|
||||
|
||||
def term_cosine_similarities(outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
|
||||
def term_cosine_similarities(outfile, min_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
|
||||
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_terms.parquet',
|
||||
'term',
|
||||
outfile,
|
||||
min_df,
|
||||
included_subreddits,
|
||||
topN,
|
||||
exclude_phrases)
|
||||
exclude_phrasesby.)
|
||||
|
||||
def author_cosine_similarities(outfile, min_df=2, included_subreddits=None, topN=10000):
|
||||
def author_cosine_similarities(outfile, min_df=2, included_subreddits=None, topN=10000, from_date=None, to_date=None):
|
||||
return cosine_similarities('/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet',
|
||||
'author',
|
||||
outfile,
|
||||
|
@ -1,4 +1,4 @@
|
||||
#!/usr/bin/bash
|
||||
start_spark_cluster.sh
|
||||
spark-submit --master spark://$(hostname):18899 weekly_cosine_similarities.py term --outfile=/gscratch/comdata/output/reddit_similarity/subreddit_comment_terms_10000_weely.parquet
|
||||
spark-submit --master spark://$(hostname):18899 wang_similarity.py --infile=/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet --max_df=10 --outfile=/gscratch/comdata/output/reddit_similarity/wang_similarity_1000_max10.feather
|
||||
stop-all.sh
|
||||
|
@ -1,3 +1,4 @@
|
||||
from pyspark.sql import SparkSession
|
||||
from pyspark.sql import Window
|
||||
from pyspark.sql import functions as f
|
||||
from enum import Enum
|
||||
@ -5,15 +6,108 @@ from pyspark.mllib.linalg.distributed import CoordinateMatrix
|
||||
from tempfile import TemporaryDirectory
|
||||
import pyarrow
|
||||
import pyarrow.dataset as ds
|
||||
from scipy.sparse import csr_matrix
|
||||
from scipy.sparse import csr_matrix, issparse
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import pathlib
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
|
||||
class tf_weight(Enum):
|
||||
MaxTF = 1
|
||||
Norm05 = 2
|
||||
|
||||
infile = "/gscratch/comdata/output/reddit_similarity/tfidf_weekly/comment_authors.parquet"
|
||||
|
||||
def reindex_tfidf_time_interval(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
|
||||
term = term_colname
|
||||
term_id = term + '_id'
|
||||
term_id_new = term + '_id_new'
|
||||
|
||||
spark = SparkSession.builder.getOrCreate()
|
||||
conf = spark.sparkContext.getConf()
|
||||
print(exclude_phrases)
|
||||
tfidf_weekly = spark.read.parquet(infile)
|
||||
|
||||
# create the time interval
|
||||
if from_date is not None:
|
||||
if type(from_date) is str:
|
||||
from_date = datetime.fromisoformat(from_date)
|
||||
|
||||
tfidf_weekly = tfidf_weekly.filter(tfidf_weekly.week >= from_date)
|
||||
|
||||
if to_date is not None:
|
||||
if type(to_date) is str:
|
||||
to_date = datetime.fromisoformat(to_date)
|
||||
tfidf_weekly = tfidf_weekly.filter(tfidf_weekly.week < to_date)
|
||||
|
||||
tfidf = tfidf_weekly.groupBy(["subreddit","week", term_id, term]).agg(f.sum("tf").alias("tf"))
|
||||
tfidf = _calc_tfidf(tfidf, term_colname, tf_weight.Norm05)
|
||||
tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits)
|
||||
tfidf = spark.read_parquet(tempdir.name)
|
||||
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
|
||||
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
|
||||
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
|
||||
return(tempdir, subreddit_names)
|
||||
|
||||
def reindex_tfidf(infile, term_colname, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False):
|
||||
spark = SparkSession.builder.getOrCreate()
|
||||
conf = spark.sparkContext.getConf()
|
||||
print(exclude_phrases)
|
||||
|
||||
tfidf = spark.read.parquet(infile)
|
||||
|
||||
if included_subreddits is None:
|
||||
included_subreddits = select_topN_subreddits(topN)
|
||||
else:
|
||||
included_subreddits = set(open(included_subreddits))
|
||||
|
||||
if exclude_phrases == True:
|
||||
tfidf = tfidf.filter(~f.col(term_colname).contains("_"))
|
||||
|
||||
print("creating temporary parquet with matrix indicies")
|
||||
tempdir = prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits)
|
||||
|
||||
tfidf = spark.read.parquet(tempdir.name)
|
||||
subreddit_names = tfidf.select(['subreddit','subreddit_id_new']).distinct().toPandas()
|
||||
subreddit_names = subreddit_names.sort_values("subreddit_id_new")
|
||||
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
|
||||
spark.stop()
|
||||
return (tempdir, subreddit_names)
|
||||
|
||||
def similarities(infile, simfunc, term_colname, outfile, min_df=None, max_df=None, included_subreddits=None, topN=500, exclude_phrases=False, from_date=None, to_date=None):
|
||||
|
||||
if from_date is not None or to_date is not None:
|
||||
tempdir, subreddit_names = reindex_tfidf_time_interval(infile, term_colname='author', min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False, from_date=from_date, to_date=to_date)
|
||||
|
||||
else:
|
||||
tempdir, subreddit_names = reindex_tfidf(infile, term_colname='author', min_df=min_df, max_df=max_df, included_subreddits=included_subreddits, topN=topN, exclude_phrases=False)
|
||||
|
||||
print("loading matrix")
|
||||
# mat = read_tfidf_matrix("term_tfidf_entries7ejhvnvl.parquet", term_colname)
|
||||
mat = read_tfidf_matrix(tempdir.name, term_colname)
|
||||
print('computing similarities')
|
||||
sims = simfunc(mat)
|
||||
del mat
|
||||
|
||||
if issparse(sims):
|
||||
sims = sims.todense()
|
||||
|
||||
print(f"shape of sims:{sims.shape}")
|
||||
print(f"len(subreddit_names.subreddit.values):{len(subreddit_names.subreddit.values)}")
|
||||
sims = pd.DataFrame(sims)
|
||||
sims = sims.rename({i:sr for i, sr in enumerate(subreddit_names.subreddit.values)}, axis=1)
|
||||
sims['subreddit'] = subreddit_names.subreddit.values
|
||||
|
||||
p = Path(outfile)
|
||||
|
||||
output_feather = Path(str(p).replace("".join(p.suffixes), ".feather"))
|
||||
output_csv = Path(str(p).replace("".join(p.suffixes), ".csv"))
|
||||
output_parquet = Path(str(p).replace("".join(p.suffixes), ".parquet"))
|
||||
|
||||
sims.to_feather(outfile)
|
||||
tempdir.cleanup()
|
||||
|
||||
def read_tfidf_matrix_weekly(path, term_colname, week):
|
||||
term = term_colname
|
||||
term_id = term + '_id'
|
||||
@ -33,8 +127,6 @@ def write_weekly_similarities(path, sims, week, names):
|
||||
sims = sims.melt(id_vars=['subreddit','week'],value_vars=names.subreddit.values)
|
||||
sims.to_parquet(p / week.isoformat())
|
||||
|
||||
|
||||
|
||||
def read_tfidf_matrix(path,term_colname):
|
||||
term = term_colname
|
||||
term_id = term + '_id'
|
||||
@ -44,6 +136,15 @@ def read_tfidf_matrix(path,term_colname):
|
||||
entries = dataset.to_table(columns=['tf_idf','subreddit_id_new',term_id_new]).to_pandas()
|
||||
return(csr_matrix((entries.tf_idf,(entries[term_id_new]-1, entries.subreddit_id_new-1))))
|
||||
|
||||
def column_overlaps(mat):
|
||||
non_zeros = (mat != 0).astype('double')
|
||||
|
||||
intersection = non_zeros.T @ non_zeros
|
||||
card1 = non_zeros.sum(axis=0)
|
||||
den = np.add.outer(card1,card1) - intersection
|
||||
|
||||
return intersection / den
|
||||
|
||||
def column_similarities(mat):
|
||||
norm = np.matrix(np.power(mat.power(2).sum(axis=0),0.5,dtype=np.float32))
|
||||
mat = mat.multiply(1/norm)
|
||||
@ -51,13 +152,16 @@ def column_similarities(mat):
|
||||
return(sims)
|
||||
|
||||
|
||||
def prep_tfidf_entries_weekly(tfidf, term_colname, min_df, included_subreddits):
|
||||
def prep_tfidf_entries_weekly(tfidf, term_colname, min_df, max_df, included_subreddits):
|
||||
term = term_colname
|
||||
term_id = term + '_id'
|
||||
term_id_new = term + '_id_new'
|
||||
|
||||
if min_df is None:
|
||||
min_df = 0.1 * len(included_subreddits)
|
||||
tfidf = tfidf.filter(f.col('count') >= min_df)
|
||||
if max_df is not None:
|
||||
tfidf = tfidf.filter(f.col('count') <= max_df)
|
||||
|
||||
tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
|
||||
|
||||
@ -86,13 +190,16 @@ def prep_tfidf_entries_weekly(tfidf, term_colname, min_df, included_subreddits):
|
||||
return(tempdir)
|
||||
|
||||
|
||||
def prep_tfidf_entries(tfidf, term_colname, min_df, included_subreddits):
|
||||
def prep_tfidf_entries(tfidf, term_colname, min_df, max_df, included_subreddits):
|
||||
term = term_colname
|
||||
term_id = term + '_id'
|
||||
term_id_new = term + '_id_new'
|
||||
|
||||
if min_df is None:
|
||||
min_df = 0.1 * len(included_subreddits)
|
||||
tfidf = tfidf.filter(f.col('count') >= min_df)
|
||||
if max_df is not None:
|
||||
tfidf = tfidf.filter(f.col('count') <= max_df)
|
||||
|
||||
tfidf = tfidf.filter(f.col("subreddit").isin(included_subreddits))
|
||||
|
||||
@ -221,15 +328,9 @@ def build_weekly_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weig
|
||||
|
||||
return df
|
||||
|
||||
|
||||
|
||||
def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
|
||||
|
||||
def _calc_tfidf(df, term_colname, tf_family):
|
||||
term = term_colname
|
||||
term_id = term + '_id'
|
||||
# aggregate counts by week. now subreddit-term is distinct
|
||||
df = df.filter(df.subreddit.isin(include_subs))
|
||||
df = df.groupBy(['subreddit',term]).agg(f.sum('tf').alias('tf'))
|
||||
|
||||
max_subreddit_terms = df.groupby(['subreddit']).max('tf') # subreddits are unique
|
||||
max_subreddit_terms = max_subreddit_terms.withColumnRenamed('max(tf)','sr_max_tf')
|
||||
@ -240,9 +341,7 @@ def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm
|
||||
|
||||
# group by term. term is unique
|
||||
idf = df.groupby([term]).count()
|
||||
|
||||
N_docs = df.select('subreddit').distinct().count()
|
||||
|
||||
# add a little smoothing to the idf
|
||||
idf = idf.withColumn('idf',f.log(N_docs/(1+f.col('count')))+1)
|
||||
|
||||
@ -272,6 +371,18 @@ def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def build_tfidf_dataset(df, include_subs, term_colname, tf_family=tf_weight.Norm05):
|
||||
term = term_colname
|
||||
term_id = term + '_id'
|
||||
# aggregate counts by week. now subreddit-term is distinct
|
||||
df = df.filter(df.subreddit.isin(include_subs))
|
||||
df = df.groupBy(['subreddit',term]).agg(f.sum('tf').alias('tf'))
|
||||
|
||||
df = _calc_tfidf(df, term_colname, tf_family)
|
||||
|
||||
return df
|
||||
|
||||
def select_topN_subreddits(topN, path="/gscratch/comdata/output/reddit_similarity/subreddits_by_num_comments.csv"):
|
||||
rankdf = pd.read_csv(path)
|
||||
included_subreddits = set(rankdf.loc[rankdf.comments_rank <= topN,'subreddit'].values)
|
||||
|
18
similarities/wang_similarity.py
Normal file
18
similarities/wang_similarity.py
Normal file
@ -0,0 +1,18 @@
|
||||
from similarities_helper import similarities
|
||||
import numpy as np
|
||||
import fire
|
||||
|
||||
def wang_similarity(mat):
|
||||
non_zeros = (mat != 0).astype(np.float32)
|
||||
intersection = non_zeros.T @ non_zeros
|
||||
return intersection
|
||||
|
||||
|
||||
infile="/gscratch/comdata/output/reddit_similarity/tfidf/comment_authors.parquet"; outfile="/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather"; min_df=1; included_subreddits=None; topN=10000; exclude_phrases=False; from_date=None; to_date=None
|
||||
|
||||
def wang_overlaps(infile, outfile="/gscratch/comdata/output/reddit_similarity/wang_similarity_10000.feather", min_df=1, max_df=None, included_subreddits=None, topN=10000, exclude_phrases=False, from_date=None, to_date=None):
|
||||
|
||||
return similarities(infile=infile, simfunc=wang_similarity, term_colname='author', outfile=outfile, min_df=min_df, max_df=None, included_subreddits=included_subreddits, topN=topN, exclude_phrases=exclude_phrases, from_date=from_date, to_date=to_date)
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(wang_overlaps)
|
@ -35,7 +35,7 @@ def cosine_similarities_weekly(tfidf_path, outfile, term_colname, min_df = None,
|
||||
subreddit_names['subreddit_id_new'] = subreddit_names['subreddit_id_new'] - 1
|
||||
spark.stop()
|
||||
|
||||
d weeks = sorted(list(subreddit_names.week.drop_duplicates()))
|
||||
weeks = sorted(list(subreddit_names.week.drop_duplicates()))
|
||||
for week in weeks:
|
||||
print(f"loading matrix: {week}")
|
||||
mat = read_tfidf_matrix_weekly(tempdir.name, term_colname, week)
|
||||
|
Loading…
Reference in New Issue
Block a user